(a)
The maximum factored load using Load and Resistance Factor Design (LRFD).
Answer to Problem 3.5.4P
The maximum factored load using LRFD is
Explanation of Solution
Given:
The following figure shows the A36 steel connection with
Figure-(1)
Concept Used:
Write the expression for the factored strength in yielding.
Write the expression for the factored strength in rupture.
Here, the factored yielding strength of the material is
Write the expression for block shear.
Write the expression for the upper limit of block shear.
Here, the upper limit is
Write the expression for the design block shear strength.
Here the design block shear strength, the minimum of Equation (III) and (IV), is
The maximum factored load is the minimum of Equation (I), (II), and (V).
Write the expression for the nominal strength in yielding for the tension member.
Here, the yield strength in yielding is
Write the expression for the nominal strength in rupture for the tension member.
Here, the yield strength in rupture is
Write the expression for the effective area.
Here, the area reduction factor is
Write the expression for the area reduction factor.
Here the distance from the centroid of the connected area
Write the expression for the net area of the tension member.
Here, the thickness of the tension member is
Write the expression for the diameter of the holes.
Here the diameter of the bolts is
Calculation:
Calculate the nominal shear strength of the tension member in yielding.
Substitute
Calculate the diameter of the holes.
Substitute
Calculate the net area of the tension member.
Substitute
Calculate the length of the connection.
Calculate the area reduction factor.
Substitute
Calculate the effective area of the member.
Substitute
Calculate the nominal shear strength of the tension member in rupture.
Substitute
Calculate the net area along the shear surface of the tension member.
Calculate the net area along the tension surface of the tension member.
Calculate the gross area along the shear surface in the gusset plate.
Calculate the net area along the shear surface of the gusset plate.
Substitute further.
Calculate the net area along the tension surface of the gusset plate.
Calculate the shear strength for the tension member.
Substitute
Calculate the upper limit.
Substitute
The value of the shear is larger than the upper limit. Hence, it is not feasible.
Adopt the shear strength of the tension member to be
Calculate the shear strength for the gusset plate.
Substitute
Calculate the upper limit
Substitute
The value of the shear is larger than the upper limit. Hence, it is not feasible.
Adopt the shear strength of the gusset plate to be
Compare the shear strength of the tension member and that of the gusset plate.
Thus the block shear strength is
Calculate the design block shear strength of the connection.
Calculate the factored yielding strength.
Substitute
Calculate the factored rupture strength.
Substitute
Calculate the factored strength of block shear.
Substitute
Conclusion:
Thus, the maximum factored load is
(b)
The allowable block shear strength of the connection.
Answer to Problem 3.5.4P
The allowable block shear strength of the connection is
Explanation of Solution
Concept used:
Write the expression for the factored design block shear strength.
Here the safety factor is
Calculation:
Calculate the allowable block shear strength of the connection.
Calculate the allowable yielding strength.
Substitute
Calculate the allowable rupture strength.
Substitute
Calculate the factored strength of block shear.
Substitute
Conclusion:
Thus, the maximum allowable block shear strength of the connection is
Want to see more full solutions like this?
Chapter 3 Solutions
Bundle: Steel Design, Loose-leaf Version, 6th + Mindtap Engineering, 1 Term (6 Months) Printed Access Card
- What would be the best way to handle when a contractor misses a concrete pour deadline which causes delays for other contractors?arrow_forwardPlease solve manuallyarrow_forward. The free fall distance was 1753 mm. The times for the release and catch recorded on the fall experiments were in millisecond: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Calculate the time taken for the fall for each experiment. Calculate for each fall the acceleration based on time and distance. Calculate the mean of the accelerations. Give in the answer window the calculated mean of accelerations in m/s2.arrow_forward
- need help. explain plzarrow_forward-Design the traffic signal intersection using all red 2 second, for all phase the truck percent 5% for all movement, and PHF -0.95 Check for capacity only Approach Through volume Right volume Left volume Lane width Number of lane Veh/hr Veh/hr Veh/hr m North 700 100 150 3.0 3 south 600 75 160 3.0 3 East 300 80 50 4.0 R west 400 50 55 4.0 2arrow_forwardneed helparrow_forward
- For the beam show below, draw A.F.D, S.F.D, B.M.D A 2 N M 10 kN.m B 2 M Carrow_forwardB: Find the numerical solution for the 2D equation below and calculate the temperature values for each grid point shown in Fig. 2 (show all steps). (Do only one trail using following initial values and show the final matrix) T₂ 0 T3 0 I need a real solution, not artificial intelligence locarrow_forward: +0 العنوان use only Two rods fins) having same dimensions, one made orass (k = 85 Wm K) and the mer of copper (k = 375 W/m K), having of their ends inserted into a furna. At a section 10.5 cm a way from furnace, the temperature of brass rod 120 Find the distance at which the ame temperature would be reached in the per rod ? both ends are ex osed to the same environment. ns 2.05 ۲/۱ ostrararrow_forward
- I need a real solution, not artificial intelligencearrow_forwardI need detailed help solving this exercise from homework of Applied Mechanics. I do not really understand how to do, please do it step by step, not that long but clear. Thank you!arrow_forwardI need detailed help solving this exercise from homework of Applied Mechanics. I do not really understand how to do, please do it step by step, not that long but clear. Thank you!arrow_forward
- Steel Design (Activate Learning with these NEW ti...Civil EngineeringISBN:9781337094740Author:Segui, William T.Publisher:Cengage LearningArchitectural Drafting and Design (MindTap Course...Civil EngineeringISBN:9781285165738Author:Alan Jefferis, David A. Madsen, David P. MadsenPublisher:Cengage Learning