Concept explainers
This problem examines possible biochemical explanations for variations of Mendel’s 9:3:3:1 ratio. Except where indicated, compounds 1, 2, 3, and 4 have different colors, as do mixtures of these compounds. A and B are enzymes that catalyze the indicated steps of the pathway. Alleles A and B specify functional enzymes A and B, respectively; these are completely dominant to alleles a and b, which do not specify any of the corresponding enzyme. If functional enzyme is present, assume that the compound to the left of the arrow is converted completely to the compound to the right of the arrow. For each pathway, what
a. | Independent pathways![]() |
b. | Redundant pathways![]() |
c. | Sequential pathway![]() |
d. | Enzymes A and B both needed to catalyze the reaction indicated.![]() |
e. | Branched pathways (assume enough of compound 1 for both pathways)![]() |
f. | Now consider independent pathways as in (a), but the presence of compound 2 masks the colors due to all other compounds. |
g. | Next consider the sequential pathway shown in (c), but compounds 1 and 2 are the same color. |
h. | Finally, examine the pathway that follows. Here, compounds 1 and 2 have different colors. The protein encoded by A prevents the conversion of compound 1 to compound 2. The protein encoded by B prevents protein A from functioning. |

a.
To determine:
The phenotypic ratio expected among the progeny if enzymes A and B follow independent pathways.
Introduction:
The pathways in which one enzyme converts a particular compound into another compound without interfering the catalytic action of another enzyme is termed as an independent pathway. For example, the reaction in which an enzyme A converts compound 1 into compound 2 and enzyme B converts compound 3 into compound 4 is an independent reaction.
Explanation of Solution
The genotype of both parents is as follows:
Parent 1: AaBb
Parent 2: AaBb
The alleles obtained from parent 1 are as follows:
AB, Ab, aB, and ab
The alleles obtained from parent 2 are as follows:
AB, Ab, aB, and ab
The cross between both the parents 2 is as follows:
♂/ ♀ | AB | Ab | aB | ab |
AB | AABB | AABb | AaBb | AaBb |
Ab | AABb | AAbb | AaBb | Aabb |
aB | AaBB | AABb | aaBB | aaBb |
ab | AaBb | Aabb | aaBb | aabb |
The alleles A and B are responsible for the activity of enzymes A and B. However, the alleles a and b are not responsible for the activity of an enzyme.
The above table represents that 9 progenies of parent 1 and 2 will contain enzyme A as they have both alleles A and B. 3 progenies will have enzyme A, 3 will have enzyme B and only 1 progeny would have no enzyme as it has only a and b alleles.
Thus, the phenotypic ratio expected among the progeny if enzyme A and B follow independent pathways is 9:3:3:1.

b.
To determine:
The phenotypic ratio expected among the progeny if enzymes A and B follow redundant pathways.
Introduction:
Redundant pathways are defined as the pathways in which a chemical reaction is catalyzed by more than one enzyme. In this type of pathways, two different enzymes are responsible for the conversion of one compound into another compound.
Explanation of Solution
The cross between both the parents 2 is as follows:
♂/ ♀ | AB | Ab | aB | ab |
AB | AABB | AABb | AaBb | AaBb |
Ab | AABb | AAbb | AaBb | Aabb |
aB | AaBB | AABb | aaBB | aaBb |
ab | AaBb | Aabb | aaBb | aabb |
Enzyme A and B follow the redundant pathways. They both convert compound 1 into compound 2. The presence of either allele A or B in the progeny can lead to the conversion of compound 1 into 2. There are 14 progenies that have either allele A or B, and there is one allele that has neither allele A nor B.
Thus, phenotypic ratio expected among the progeny if enzymes A and B follow redundant pathways is 15:1.

c.
To determine:
The phenotypic ratio expected among the progeny if enzymes A and B follow sequential pathways.
Introduction:
The pathway in which the conversion of one compound into another compound is a sequential process is termed as a sequential pathway. In this type of pathway, the enzyme A converts compound 1 into compound 2, and then the enzyme B convert compound 2 into compound 3. In this case, compound 1 is the reactant, while compound 3 is the product.
Explanation of Solution
The cross between both the parents 2 is as follows:
♂/ ♀ | AB | Ab | aB | ab |
AB | AABB | AABb | AaBb | AaBb |
Ab | AABb | AAbb | AaBb | Aabb |
aB | AaBB | AABb | aaBB | aaBb |
ab | AaBb | Aabb | aaBb | aabb |
The sequential pathway requires both the enzymes, enzyme A and enzyme B. This indicates that the progenies that have both the alleles A and B can have sequential pathways. According to the cross made between parents 1 and 2, there are 9 progenies that have both A and B alleles. These 9 progenies produce compound 3. However, the remaining 7 progenies will not produce compound 3. Out of these 7 progenies, 3 will produce compound 2 as they have allele A and 4 progenies will produce no compound.
Thus, the phenotypic ratio expected among the progeny if enzymes A and B follow sequential pathways is 9:4:3.

d.
To determine:
The phenotypic ratio expected among the progeny if enzymes A and B both are required to catalyze a reaction.
Introduction:
The set of alleles that provide characteristics to an organism are known as genotype. The characteristics that are expressed by the genotype are termed as phenotypic traits. The genotype controls the phenotypes. The ratio of all the phenotypes that are produced in the progenies is termed as the phenotypic ratio.
Explanation of Solution
The cross between both the parents 2 is as follows:
♂/ ♀ | AB | Ab | aB | ab |
AB | AABB | AABb | AaBb | AaBb |
Ab | AABb | AAbb | AaBb | Aabb |
aB | AaBB | AABb | aaBB | aaBb |
ab | AaBb | Aabb | aaBb | aabb |
According to the above table, there are only 9 progenies that can have both A and B enzymes. This is because only these 9 progenies have alleles A and B. The enzyme A is produced by the allele A while the enzyme B is produced by the allele B. However, the rest 7 progenies cannot produce both enzymes A.
Thus, the phenotypic ratio expected among the progeny if enzymes A and B both are required to catalyze a reaction is 9:7.

e.
To determine:
The phenotypic ratio expected among the progeny if enzymes A and B follow branched pathways.
Introduction:
The pathway in which a reactant can be converted into two different pathways by the action of two different enzymes is termed as a branched pathway. For example, compound 1 is a reactant. The enzyme A acts on it and converts it into compound 2. Another enzyme called B acts on this same reactant and produced another compound 3.
Explanation of Solution
The active enzyme A acts on compound 1 and produces compound 2. Similarly, the active enzyme B leads to the production of compound 3 from compound 1. In case both the enzymes are present, then both the compounds 2 and 3 are produced.
There are 9 progenies that produce the compounds, 3 produce only compound 2 and 3 progenies produce compound 3. There is only one progeny that do not produce any compound.
Thus, the phenotypic ratio expected among the progeny if enzymes A and B follow branched pathways is 9:3:3:1.

f.
To determine:
The phenotypic ratio expected among the progeny if enzymes A and B follow independent pathways and compound 2 masks color due to all compounds.
Introduction:
The enzyme A acts on compound 1 and converts it into another compound 2. In case the compound 2 masks the color due to the presence of all other compounds, then the presence or absence of enzyme B is immaterial.
Explanation of Solution
The cross between both the parents 2 is as follows:
♂/ ♀ | AB | Ab | aB | ab |
AB | AABB | AABb | AaBb | AaBb |
Ab | AABb | AAbb | AaBb | Aabb |
aB | AaBB | AABb | aaBB | aaBb |
ab | AaBb | Aabb | aaBb | aabb |
The above table represents a total of 16 progenies. There are 12 progenies that have active enzyme A as they have allele A. However, the rest four progenies do not have an active enzyme. This is because they lack the allele A. There are 3 progenies out of these 4 progenies that can produce active enzyme B as they have allele B. The remaining one progeny does not produce any active enzyme as it lacks both alleles A and B.
Thus, the phenotypic ratio expected among the progeny if enzymes A and B follow independent pathways and compound 2 masks color due to all compounds is 12:3:1.

g.
To determine:
The phenotypic ratio expected among the progeny if enzymes A and B follow sequential pathways given that compound 1 and 2 are of the same color.
Introduction:
The same color of compounds 1 and 2 indicate that the presence or absence of enzyme A that does not affect the sequential pathway. The enzyme responsible for the conversion of compound 2 into compound 3 is enzyme B.
Explanation of Solution
The genotype of both parents is as follows:
Parent 1: AaBb
Parent 2: AaBb
The alleles obtained from parent 1 are as follows:
AB, Ab, aB, and ab
The alleles obtained from parent 2 are as follows:
AB, Ab, aB, and ab
The cross between both the parents 2 is as follows:
♂/ ♀ | AB | Ab | aB | ab |
AB | AABB | AABb | AaBb | AaBb |
Ab | AABb | AAbb | AaBb | Aabb |
aB | AaBB | AABb | aaBB | aaBb |
ab | AaBb | Aabb | aaBb | aabb |
The above table represents that there are 9 progenies that have both enzymes A and B as they have alleles A and B. Out of these 9 progenies, 3 have enzyme A but not B. This reflects that compound 2 will be formed from these progenies. The rest 7 progenies will not have the same color as they do not have both enzymes A and B.
Thus, the phenotypic ratio expected among the progeny if enzymes A and B follow sequential pathways given that compound 1 and 2 are of the same color is 9:7.

h.
To determine:
The phenotypic ratio of the pathway in which protein A and B are associated with the conversion of compound 1 into compound 2.
Introduction:
The protein A is the inhibitory factor that prevents the conversion of compound 1 into compound 2. Another protein named B inhibits the functioning of protein A. The protein A can perform its function only in the absence of protein B.
Explanation of Solution
The protein A inhibits the formation of compound 2. This reflects that all the progenies that have protein A should not produce compound 2. The progenies that lack the allele A cannot produce the protein A. However, if the progenies have protein B along with protein A, then compound 2 can be produced. This reflects that the progenies that have both the proteins A and B can produce the same colored compounds. Similarly, the progenies that have proteins B and not A will also produce a colored compound 2. The progenies with proteins A but not B will produce a particular colored compound.
Thus, the phenotypic ratio of the pathway in which protein A and B are associated with the conversion of compound 1 into compound 2 is 12:3:1.
Want to see more full solutions like this?
Chapter 3 Solutions
GENETICS:FROM GENES TO GENOMES(LL)-PKG
- Reactunts C6H12O6 (Glucose) + 2NAD+ + 2ADP 2 Pyruvic acid + 2NADH + 2ATP a. Which of the above are the reactants? b. Which of the above are the products? c. Which reactant is the electron donor? GHz 06 (glucose) d. Which reactant is the electron acceptor? NAD e. Which of the products have been reduced? NADH f. Which of the products have been oxidized? g. Which process was used to produce the ATP? h. Where was the energy initially in this chemical reaction and where is it now that it is finished? i. Where was the carbon initially in this chemical reaction and where is it now that it is finished? j. Where were the electrons initially in this chemical reaction and where is it now that it is finished? 3arrow_forwardThere is ________ the concept of global warming. Very strong evidence to support Some strong evidence to support Evidence both supporting and against Evidence againstarrow_forwardHow many types of reactions can an enzyme perform?arrow_forward
- Your goal is to produce black seeds resistant to mold. So you make the same cross again (between a homozygous black seeded, mold susceptible parent and a homozygous white seeded and mold resistant parent), and, again, advance progeny by SSD to create 100 F10 generation plants. Based on the information you obtained from your first crossing experiment (Question #4), how many F10 plants would you expect to have black seeds and be resistant to mold? Assume that a toxin produced by the mold fungus has been isolated. Only mold resistant seeds will germinate in the presence of the toxin. Could you use this toxin screening procedure to have segregation distortion work in your favor in the F2 generation? Explain your answer. Info from Question 4 a. P Locus (Seed Color): Hypothesis: The null hypothesis (H₀) is that seed color is controlled by alleles at a single locus. Observed Data: Total white seeds: 45 (resistant plants) + 6 (susceptible plants) = 51 Total black seeds: 7 (resistant…arrow_forward10. Consider the following enzyme and its substrate where the "+" and "-" indicate cations and anions, respectively. Explain which of the following inhibitors could inhibit this enzyme? Which type of inhibitor would it be and why? (Video 5-2) Substrate Enzyme Potential inhibitorsarrow_forwardUsing Punnett Squares Punnett squares are one good way to predict the outcome of genetic crosses. Punnett squares use mathematical probability to help predict the genotype and phenotype combinations in genetic crosses. The number of possible alleles from each parent determines the number of rows and columns in the Punnett square. Independent Assortment KEY QUESTION How do alleles segregate when more than one gene is involved? Mendel wondered if the segregation of one pair of alleles affects another pair. For example, does the gene that determines the shape of a seed affect the gene for seed color? This type of experiment is known as a two-factor, or dihybrid, cross because it involves two different genes. Single-gene crosses are monohybrid crosses. Visual Reading Tool: Two-Factor Cross: F₂ The Punnett square shows the results of self-crossing the F, generation of a cross between round yellow peas and wrinkled green peas. 1. List the different genotypes in the F, generation. What is the…arrow_forward
- CHAPTER 12 LESSON 2 Applying Mendel's Principles READING TOOL Connect to Visuals Before you read, preview Figure 12-7. Try to infer the purpose of this diagram. As you read, compare your inference to the text. After you read, revise your statement if needed or write a new one about the diagram's purpose. Take notes on the lines provided. Then view the Punnett square and answer the questions below regarding the genotypes and phenotypes. Inference: Revision: Parent 2 rryy Gametes F ry Parent 1 RRYY Gametes RY RrYy The F, generation are all RrYy. 1. What is the phenotype of parent 1?. 2. What is the genotype of parent 1? 3. What is the phenotype of parent 2? 4. What is the genotype of parent 2? 5. What is the phenotype of the F, offspring?. 6. What is the genotype of the F, offspring?. 7. What kind of cross does this figure describe? 144 Chanter 12 Introduction to Genetice Copyright Pearson Education Inc. or its affiliator. All rights reserved.arrow_forwardHow is the term enzyme related to the term proteinarrow_forwardCan very low temperatures cause proteins to denature? Explain why or why not?arrow_forward
- Humans consider themselves amazingly clever and innovative, constantly developing "new" ways of altering the world around us. As material consumption has increased, many have turned to the ideas of recycling and reuse as a means to minimize some negative aspects of our modern consumerism. Mother Nature though is the ultimate innovator and, more importantly, the ultimate recycler.arrow_forwardH gene assorts independently from the I gene. Both on autosomes. One man and one woman, both of HhIAIB genotype. Determine the blood type of progeny and fractions out of 16arrow_forwardAlleles at the P locus control seed color. Plants which are pp have white seeds, white flowers and no pigment in vegetative parts. Plants which are P_ have black seeds, purple flowers and may have varying degrees of pigment on stems and leaves. Seed color can be assessed, visually, based on if the seed is white or not white A gene for mold resistance has been reported and we want to determine its inheritance and whether it is linked to P. For the purposes of this exercise, we will assume that resistance is controlled by a single locus M, and M_ plants are resistant and mm plants are susceptible. Resistance can be measured, under greenhouse conditions, 2 weeks after planting, by injecting each seedling with a spore suspension. After two weeks, the seedlings can be rated as resistant or susceptible, based on whether or not tissue is actively sporulating. For this exercise we will use seed and data from the F10 generation of a recombinant inbred population produced using single seed…arrow_forward
- Human Heredity: Principles and Issues (MindTap Co...BiologyISBN:9781305251052Author:Michael CummingsPublisher:Cengage LearningHuman Biology (MindTap Course List)BiologyISBN:9781305112100Author:Cecie Starr, Beverly McMillanPublisher:Cengage LearningBiology (MindTap Course List)BiologyISBN:9781337392938Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. BergPublisher:Cengage Learning
- Biology 2eBiologyISBN:9781947172517Author:Matthew Douglas, Jung Choi, Mary Ann ClarkPublisher:OpenStaxConcepts of BiologyBiologyISBN:9781938168116Author:Samantha Fowler, Rebecca Roush, James WisePublisher:OpenStax CollegeBiology: The Dynamic Science (MindTap Course List)BiologyISBN:9781305389892Author:Peter J. Russell, Paul E. Hertz, Beverly McMillanPublisher:Cengage Learning





