Concept explainers
In four-o’clocks, the allele for red flowers is incompletely dominant to the allele for white flowers, so heterozygotes have pink flowers. What ratios of flower colors would you expect among the offspring of the following crosses: (a) pink × pink,(b) white × pink, (c) red × red, (d) red × pink,(e) white × white, and (f) red × white? If you specifically wanted to produce pink flowers, which of these crosses would be most efficient?

To determine:
The ratio of flower colors that would be expected among the offspring of the crosses pink × pink, white × pink, red × red, red × pink, white × white, and red × white.
Introduction:
According to Mendel's conclusion, a pair of factors control the expression of a trait (a term that was used by Mendel for genes), and each factor of the pair segregate from each other during gamete formation.
Explanation of Solution
In four-o’ clocks, alleles of the red flowers are incompletely dominant to the allele for white flowers. Consider that genotype of red flowers is AA, then genotype of white flowers would be aa. Pink flowers are producing from the cross of these two flowers so its genotype would be Aa.
Condition (a)
The cross of two pink flowers (Aa×Aa) is taking place means the formed gametes would be A and a from both the parents. The ratio of the flowers that are expected to produce among the offspring of this cross is shown in the Punnett square.
♀/♂ | A | a |
A | AA Red flowers |
Aa Pink flower |
a | Aa Pink flower |
aa White flower |
The obtained ratio of red flowers, pink flowers, and white flowers is 1:2:1.
Condition (b)
The cross of white and pink flower (Aa×aa) is taking place means one parent will produce two different types of gametes that is A and a, and another parent will produce only one type of gamete that is a. The ratio of the flowers that are expected to produce among the offspring of this cross is shown in the Punnett square.
♀/♂ | A | a |
a | Aa Pink flower |
aa White flower |
a | Aa Pink flower |
aa White flower |
The obtained ratio of pink flowers and white flowers is 1:1.
Condition (c)
The cross of two red flowers (AA×AA) is taking place means parents will produce only dominant gametes. The ratio of the flowers that is expected to produce among the offspring of this cross is shown in the Punnett square.
♀/♂ | A | A |
A | AA Red flower |
AA Red flower |
A | AA Red flower |
AA Red flower |
All offspring that would be produced from this cross would be red flowers because both the parents are homozygous dominant.
Condition (d)
The cross of red and pink flower (AA×Aa) is taking place means one parent will produce two different types of gametes that is A and a, and another parent will produce only one type of gamete that is A. The ratio of the flowers that is expected to produce among the offspring of this cross is shown in the Punnett square.
♀/♂ | A | A |
A | AA Red flower |
AA Red flower |
a | Aa Pink flower |
Aa Pink flower |
The obtained ratio of pink flowers and red flowers is 1:1.
Condition (e)
The cross of two white flowers (aa×aa) is taking place means parents will produce only recessive gametes. The ratio of the flowers that is expected to produce among the offspring of this cross is shown in the Punnett square.
♀/♂ | a | a |
a | aa White flower |
aa White flower |
a | aa White flower |
aa White flower |
The offspring that would be produced from this cross would be white flowers because both the parents are homozygous recessive.
Condition (f)
The cross of red flowers and white flowers (AA×aa) is taking place means one parent is homozygous dominant so it would produce only dominant gamete that is A. Another parent is homozygous recessive so it will produce only recessive alleles that is a. The ratio of the flowers that is expected to produce among the offsprings of this cross is shown in the Punnett square.
♀/♂ | A | A |
a | Aa Pink flower |
Aa Pink flower |
a | Aa Pink flower |
Aa Pink flower |
All flowers will be of pink color because allele of red flower is incompletely dominant over the allele of white flower.

To determine:
The cross that would be most efficient to produce pink flowers.
Introduction:
Inheritance is a mechanism in which traits of the parents transfer into the offsprings of the next generation. Gregor Mendel was a monk, and he discovered three laws that describe the inheritance of factors from parents to offsprings.
Explanation of Solution
The cross of red and white flowers would be more efficient to produce pink flowers. Red flowers are homozygous dominant means the genotype of these flowers would be AA, and white flowers are homozygous recessive, which means its both gametes are recessive means aa. The cross of red flower and white flowers is as follows:
♀/♂ | A | A |
a | Aa Pink flower |
Aa Pink flower |
a | Aa Pink flower |
Aa Pink flower |
It can be observed from the cross that all the produced offsprings are pink in color. Therefore, the cross of red flower and white flower would be efficient to produce pink flowers.
Want to see more full solutions like this?
Chapter 3 Solutions
GENETICS:FROM GENES TO GENOMES(LL)-PKG
- can you help? I think its B but not surearrow_forwardSkip to main content close Homework Help is Here – Start Your Trial Now! arrow_forward search SEARCH ASK Human Anatomy & Physiology (11th Edition)BUY Human Anatomy & Physiology (11th Edition) 11th Edition ISBN: 9780134580999 Author: Elaine N. Marieb, Katja N. Hoehn Publisher: PEARSON 1 The Human Body: An Orientation expand_moreChapter 1 : The Human Body: An Orientation Chapter Questions expand_moreSection: Chapter Questions Problem 1RQ: The correct sequence of levels forming the structural hierarchy is A. (a) organ, organ system,... format_list_bulletedProblem 1RQ: The correct sequence of levels forming the structural hierarchy is A. (a) organ, organ system,... See similar textbooks Bartleby Related Questions Icon Related questions Bartleby Expand Icon bartleby Concept explainers bartleby Question Draw a replication bubble with two replication forks.blue lines are DNA single strands and red lines are RNA single strands.indicate all 3' and 5’ ends on all DNA single…arrow_forwardProvide an answerarrow_forward
- Question 4 1 pts Which of the following would be most helpful for demonstrating alternative splicing for a new organism? ○ its proteome and its transcriptome only its transcriptome only its genome its proteome and its genomearrow_forwardIf the metabolic scenario stated with 100 mM of a sucrose solution, how much ATP would be made then during fermentation?arrow_forwardWhat is agricuarrow_forward
- When using the concept of "a calorie in is equal to a calorie out" how important is the quality of the calories?arrow_forwardWhat did the Cre-lox system used in the Kikuchi et al. 2010 heart regeneration experiment allow researchers to investigate? What was the purpose of the cmlc2 promoter? What is CreER and why was it used in this experiment? If constitutively active Cre was driven by the cmlc2 promoter, rather than an inducible CreER system, what color would you expect new cardiomyocytes in the regenerated area to be no matter what? Why?arrow_forwardWhat kind of organ size regulation is occurring when you graft multiple organs into a mouse and the graft weight stays the same?arrow_forward
- What is the concept "calories consumed must equal calories burned" in regrads to nutrition?arrow_forwardYou intend to insert patched dominant negative DNA into the left half of the neural tube of a chick. 1) Which side of the neural tube would you put the positive electrode to ensure that the DNA ends up on the left side? 2) What would be the internal (within the embryo) control for this experiment? 3) How can you be sure that the electroporation method itself is not impacting the embryo? 4) What would you do to ensure that the electroporation is working? How can you tell?arrow_forwardDescribe a method to document the diffusion path and gradient of Sonic Hedgehog through the chicken embryo. If modifying the protein, what is one thing you have to consider in regards to maintaining the protein’s function?arrow_forward
- Biology (MindTap Course List)BiologyISBN:9781337392938Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. BergPublisher:Cengage LearningConcepts of BiologyBiologyISBN:9781938168116Author:Samantha Fowler, Rebecca Roush, James WisePublisher:OpenStax CollegeHuman Biology (MindTap Course List)BiologyISBN:9781305112100Author:Cecie Starr, Beverly McMillanPublisher:Cengage Learning
- Human Heredity: Principles and Issues (MindTap Co...BiologyISBN:9781305251052Author:Michael CummingsPublisher:Cengage LearningBiology 2eBiologyISBN:9781947172517Author:Matthew Douglas, Jung Choi, Mary Ann ClarkPublisher:OpenStaxBiology: The Dynamic Science (MindTap Course List)BiologyISBN:9781305389892Author:Peter J. Russell, Paul E. Hertz, Beverly McMillanPublisher:Cengage Learning





