Concept explainers
a. | How would you describe inheritance of flower color? Describe how specific alleles influence each other and therefore affect |
b. | A white F2 plant is allowed to self-fertilize. Of the progeny, 3/4 are white-flowered, and 1/4 are purple-flowered. What is the genotype of the white F2 plant? |
c. | A purple F2 plant is allowed to self-fertilize. Of the progeny, 3/4 are purple-flowered, and 1/4 are white flowered. What is the genotype of the purple F2 plant? |
d. | Two white F2 plants are crossed with each other. Of the progeny, 1/2 are purple-flowered, and 1/2 are white-flowered. What are the genotypes of the two white F2 plants? |
Two true-breeding white strains of the plant Illegitimati noncarborundum were mated, and the F progeny were all white. When the F plants were allowed to self-fertilize, 126 white-flowered and 33 purple-flowered F plants grew.
a.
To determine:
The inheritance of white colored flowers in the plant Illegitimati noncarborundum along with the description of the influence of alleles on each other and the effect on the phenotype of the plant.
Introduction:
The cross between white strains of plant Illegitimati noncarborundum results in the production of white colored flowers in the F1 generation. The self cross between offsprings of F1 generation produces 126 offsprings with white flowers and 33 offsprings with purple flowers.
Explanation of Solution
Let the genotype of white flowers of F1 generation be AABB and aabb respectively. The cross between AABB and aabb is as follows:
AB | Ab | aB | ab | |
AB | AABB (White) |
AABb (White) |
AaBB (White) |
AaBb (White) |
Ab | AABb (White) |
AAbb (White) |
AaBb (White) |
Aabb (White) |
aB | AaBB (White) |
AaBb (White) |
aaBB (Purple) |
aaBb (Purple) |
ab | AaBb (White) |
Aabb (White) |
aaBb (Purple) |
Aabb (White) |
The phenotypic ratio of flower color is as follows:
• White flowers with alleles A and B =
• White flowers with alleles a and b =
• White colored flower with alleles A and b=
• Purple colored flower with alleles B and a=
It can be observed that the phenotypic ratio of the F2 generation is 13:3. This implies that A is epistatic over B resulting in 3 flowers with alleles A and b to be white whereas flowers with alleles B and a to be purple. It indicates that the presence of dominant allele A masks the effect of other alleles resulting in the production of white colored flowers. Therefore, the inheritance pattern is found to be dominant epistasis.
b.
To determine:
The genotype of white F2 plants which produced offsprings with 3 out of 4 flowers as white and 1 out of 4 as purple.
Introduction:
Epistasis is a phenomenon in which one gene suppresses the expression of other genes. The gene suppressing the effect of other genes can be a dominant gene as well as recessive gene.
Explanation of Solution
According to the given information, the cross between a white F2 plant produces 3/4 white flowers and 1/4 purple flowers. Let us assume the genotype of white parent plants to be AaBB.
The cross between AaBB and AaBB is as follows:
AB | AB | aB | aB | |
AB | AABB (White) |
AABB (White) |
AaBB (White) |
AaBB (White) |
AB | AABB (White) |
AABB (Unknown) |
AaBB (White) |
AaBB (White) |
aB | AaBB (White) |
AaBB (White) |
aaBB (Purple) |
aaBB (Purple) |
aB | AaBB (White) |
AaBB (White) |
aaBB (Purple) |
aaBB (Purple) |
The phenotypic ratio of flower color is as follows:
• White flowers =
• Purple flowers =
The cross depicts that the assumption about parent plants having heterozygous alleles is correct. The ratio of 3:1 would be produced if the parents have genotype consisting of an amalgamation of the homozygous and heterozygous gene. Since A is epistatic over B, then all the offsprings having dominant A would produce white flowers. Therefore, the genotype of parent plant with white flowers is AaBB.
c.
To determine:
The genotype of purple F2 plant which produced offsprings with 3 out of 4 flowers as purple and 1 out of 4 as white.
Introduction:
Epistasis is a phenomenon which affects the expression of genes. If dominant allele of one gene suppresses other genes, then it is known as dominant epistasis. On the contrary, if recessive allele of one gene suppresses other genes, then it is known as recessive epistasis.
Explanation of Solution
According to the given information, the cross between white F2 plant produces 3/4 purple flowers and 1/4 white flowers. Let us assume the genotype of white parent plants to be aaBb.
The cross between aaBb and aaBb is as follows:
aB | ab | aB | ab | |
aB | aaBB (Purple) |
aaBb (Purple) |
aaBB (Purple) |
aaBb (Purple) |
ab | aaBb (Purple) |
aabb (White) |
aaBb (Purple) |
aabb (White) |
aB | aaBB (Purple) |
aaBb (Purple) |
aaBB (Purple) |
aaBb (Purple) |
ab | aaBb (Purple) |
aabb (white) |
aaBb (Purple) |
aabb (White) |
The phenotypic ratio of flower color is as follows:
• Purple flowers =
• White flowers =
The cross depicts that the assumption about parent plants having heterozygous alleles is correct. The ratio of 3:1 would be produced if the parents have genotype consisting of an amalgamation of homozygous and heterozygous gene. Since A is epistatic over B, then all the offsprings having dominant B and recessive a would produce purple flowers. Therefore, the genotype of parent plant with purple flowers is aaBB.
d.
To determine:
The genotype of two white F2 plants which produced offsprings with the phenotypic ratio of white and purple flowers as 1/2.
Introduction:
Genes are present on chromosomes. Each gene is responsible for the expression of a specific phenotype. The expression of genes in the progeny is known as phenotype, whereas the gene set which is responsible for a particular phenotype is known as genotype.
Explanation of Solution
According to the given information, the cross between two white F2 plant produces 1/2 purple flowers and 1/2 white flowers. Let us assume the genotype of one parent as aabb and another parent plant as AaBB.
The cross between aabb and AaBB is as follows:
ab | ab | ab | ab | |
AB | aAbB (White) |
aAbB (White) |
aAbB (White) |
aAbB (White) |
aB | aabB (Purple) |
aabB (Purple) |
aabB (Purple) |
aabB (Purple) |
AB | aAbB (White) |
aAbB (White) |
aAbB (White) |
aAbB (White) |
aB | aabB (Purple) |
aabB (Purple) |
aabB (Purple) |
aabB (Purple) |
The phenotypic ratio of flower color is as follows:
• Purple flowers =
• White flowers =
The cross depicts that the assumption about one parent having homozygous alleles and other parents having combination of homozygous and heterozygous gene is correct. The ratio of 1:1 would be produced. Therefore, the genotype of one parent plant with white flowers is aabb, and another parent plant with white flowers is AaBb.
Want to see more full solutions like this?
Chapter 3 Solutions
GENETICS:FROM GENES TO GENOMES(LL)-PKG
- Identify the indicated tissue. (Tilia stem x.s.) parenchyma collenchyma sclerenchyma xylem phloem none of thesearrow_forwardIdentify the indicated structure. (Cucurbita stem l.s.) pit lenticel stomate tendril none of thesearrow_forwardIdentify the specific cell? (Zebrina leaf peel) vessel element sieve element companion cell tracheid guard cell subsidiary cell none of thesearrow_forward
- What type of cells flank the opening on either side? (leaf x.s.) vessel elements sieve elements companion cells tracheids guard cells none of thesearrow_forwardWhat specific cell is indicated. (Cucurbita stem I.s.) vessel element sieve element O companion cell tracheid guard cell none of thesearrow_forwardWhat specific cell is indicated? (Aristolochia stem x.s.) vessel element sieve element ○ companion cell O O O O O tracheid O guard cell none of thesearrow_forward
- Identify the tissue. parenchyma collenchyma sclerenchyma ○ xylem O phloem O none of thesearrow_forwardPlease answer q3arrow_forwardRespond to the following in a minimum of 175 words: How might CRISPR-Cas 9 be used in research or, eventually, therapeutically in patients? What are some potential ethical issues associated with using this technology? Do the advantages of using this technology outweigh the disadvantages (or vice versa)? Explain your position.arrow_forward
- You are studying the effect of directional selection on body height in three populations (graphs a, b, and c below). (a) What is the selection differential? Show your calculation. (2 pts) (b) Which population has the highest narrow sense heritability for height? Explain your answer. (2 pts) (c) If you examined the offspring in the next generation in each population, which population would have the highest mean height? Why? (2 pts) (a) Midoffspring height (average height of offspring) Short Short Short Short (c) Short (b) Short Tall Short Tall Short Short Tall Midparent height (average height of Mean of population = 65 inches Mean of breading parents = 70 inches Mean of population = 65 inches Mean of breading parents = 70 inches Mean of population = 65 inches Mean of breading parents = 70 inchesarrow_forwardP You are studying a population of 100 flowers that has two alleles at a locus for flower color, blue (B) and green (G). There are 15 individuals with the BB genotype, 70 individuals with the BG genotype, and 15 individuals with the GG genotype. (a) What are the allele frequencies of B and G in the starting population? Show your calculations. (2 pts) (b) Is this population in Hardy-Weinberg equilibrium? Show your calculations. (3 pts) 12pt v Paragraph BIU UA AV & VT2V f CO Varrow_forwardIn a natural population of outbreeding plants, the variance of the total number of seeds per plant is 16. From the natural population, 20 plants are taken into the laboratory and developed into separate true-breeding lines by self- fertilization-with selection for high, low, or medium number of seeds-for 10 generations. The average variance in the tenth generation in each of the 20 sets is about equal and averages 5.8 across all the sets. Estimate the broad-sense heritability for seed number in this population. (4 pts) 12pt v Paragraph BIUA V V T² v B ① O wordsarrow_forward
- Human Heredity: Principles and Issues (MindTap Co...BiologyISBN:9781305251052Author:Michael CummingsPublisher:Cengage LearningBiology (MindTap Course List)BiologyISBN:9781337392938Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. BergPublisher:Cengage LearningHuman Biology (MindTap Course List)BiologyISBN:9781305112100Author:Cecie Starr, Beverly McMillanPublisher:Cengage Learning
- Concepts of BiologyBiologyISBN:9781938168116Author:Samantha Fowler, Rebecca Roush, James WisePublisher:OpenStax CollegeBiology: The Dynamic Science (MindTap Course List)BiologyISBN:9781305389892Author:Peter J. Russell, Paul E. Hertz, Beverly McMillanPublisher:Cengage LearningBiology 2eBiologyISBN:9781947172517Author:Matthew Douglas, Jung Choi, Mary Ann ClarkPublisher:OpenStax