Concept explainers
(a)
Interpretation:
The following chemical equation is to be balanced.
Concept introduction:
Balancing is a hit and trial method where a smallest whole number coefficient is used. One element is balanced at a time on both side of the equation.
In a balanced chemical equation, the total mass of reactants and products are equal in a balanced chemical equation, thus, it obeyed the law of conservation of mass.
Following are the steps to write a balanced chemical equation.
Step 1: Translate the chemical statement into a skeleton equation. The chemical substances that undergo a change are termed as reactants and the chemical substances that are produced during the chemical change are termed as products. The reactants are specified on the left side of the yield arrow while the products are specified on the right side of the yield arrow. Put a blank before each formula while beginning the balancing process.
Step 2: Identify the most complex substance and choose an element such that the element must be present only in one reactant and one product. Place the stoichiometric coefficient before the element(s) such that the number of atoms of that element(s) is the same on both sides.
Step 3: Balance the remaining atoms by placing the
Step 4: In a balanced
Step 5: Check whether the chemical equation is balanced or not by counting the number of atoms of each element on both sides.
Step 6: Specify the
(b)
Interpretation:
The following chemical equation is to be balanced.
Concept introduction:
Balancing is a hit and trial method where a smallest whole number coefficient is used. One element is balanced at a time on both side of the equation.
In a balanced chemical equation, the total mass of reactants and products are equal in a balanced chemical equation, thus, it obeyed the law of conservation of mass.
Following are the steps to write a balanced chemical equation.
Step 1: Translate the chemical statement into a skeleton equation. The chemical substances that undergo a change are termed as reactants and the chemical substances that are produced during the chemical change are termed as products. The reactants are specified on the left side of the yield arrow while the products are specified on the right side of the yield arrow. Put a blank before each formula while beginning the balancing process.
Step 2: Identify the most complex substance and choose an element such that the element must be present only in one reactant and one product. Place the stoichiometric coefficient before the element(s) such that the number of atoms of that element(s) is the same on both sides.
Step 3: Balance the remaining atoms by placing the stoichiometric coefficients before the element(s) such that the number of atoms of that element(s) is the same on both sides. Identify the least complex substance and end with it.
Step 4: In a balanced chemical reaction, the smallest whole number coefficients are most preferred. Hence, adjusting the coefficients in such a way that the smallest whole number coefficients are obtained for each element.
Step 5: Check whether the chemical equation is balanced or not by counting the number of atoms of each element on both sides.
Step 6: Specify the states of matter of each chemical substance present in the balanced chemical equation. The table for the abbreviations used for each state is as follows:
(c)
Interpretation:
The following chemical equation is to be balanced.
Concept introduction:
Balancing is a hit and trial method where a smallest whole number coefficient is used. One element is balanced at a time on both side of the equation.
In a balanced chemical equation, the total mass of reactants and products are equal in a balanced chemical equation, thus, it obeyed the law of conservation of mass.
Following are the steps to write a balanced chemical equation.
Step 1: Translate the chemical statement into a skeleton equation. The chemical substances that undergo a change are termed as reactants and the chemical substances that are produced during the chemical change are termed as products. The reactants are specified on the left side of the yield arrow while the products are specified on the right side of the yield arrow. Put a blank before each formula while beginning the balancing process.
Step 2: Identify the most complex substance and choose an element such that the element must be present only in one reactant and one product. Place the stoichiometric coefficient before the element(s) such that the number of atoms of that element(s) is the same on both sides.
Step 3: Balance the remaining atoms by placing the stoichiometric coefficients before the element(s) such that the number of atoms of that element(s) is the same on both sides. Identify the least complex substance and end with it.
Step 4: In a balanced chemical reaction, the smallest whole number coefficients are most preferred. Hence, adjusting the coefficients in such a way that the smallest whole number coefficients are obtained for each element.
Step 5: Check whether the chemical equation is balanced or not by counting the number of atoms of each element on both sides.
Step 6: Specify the states of matter of each chemical substance present in the balanced chemical equation. The table for the abbreviations used for each state is as follows:
(d)
Interpretation:
The following chemical equation is to be balanced.
Concept introduction:
Balancing is a hit and trial method where a smallest whole number coefficient is used. One element is balanced at a time on both side of the equation.
In a balanced chemical equation, the total mass of reactants and products are equal in a balanced chemical equation, thus, it obeyed the law of conservation of mass.
Following are the steps to write a balanced chemical equation.
Step 1: Translate the chemical statement into a skeleton equation. The chemical substances that undergo a change are termed as reactants and the chemical substances that are produced during the chemical change are termed as products. The reactants are specified on the left side of the yield arrow while the products are specified on the right side of the yield arrow. Put a blank before each formula while beginning the balancing process.
Step 2: Identify the most complex substance and choose an element such that the element must be present only in one reactant and one product. Place the stoichiometric coefficient before the element(s) such that the number of atoms of that element(s) is the same on both sides.
Step 3: Balance the remaining atoms by placing the stoichiometric coefficients before the element(s) such that the number of atoms of that element(s) is the same on both sides. Identify the least complex substance and end with it.
Step 4: In a balanced chemical reaction, the smallest whole number coefficients are most preferred. Hence, adjusting the coefficients in such a way that the smallest whole number coefficients are obtained for each element.
Step 5: Check whether the chemical equation is balanced or not by counting the number of atoms of each element on both sides.
Step 6: Specify the states of matter of each chemical substance present in the balanced chemical equation. The table for the abbreviations used for each state is as follows:
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
CHEMISTRY/ALEKS AND CONNECT
- Don't used hand raitingarrow_forwardat 32.0 °C? What is the osmotic pressure (in atm) of a 1.46 M aqueous solution of urea [(NH2), CO] at 3 Round your answer to 3 significant digits.arrow_forwardReagan is doing an atomic absorption experiment that requires a set of zinc standards in the 0.4-1.6 ppm range. A 1000 ppm Zn solution was prepared by dissolving the necessary amount of solid Zn(NO3)2 in water. The standards can be prepared by diluting the 1000 ppm Zn solution. Table 1 shows one possible set of serial dilutions (stepwise dilution of a solution) that Reagan could perform to make the necessary standards. Solution A was prepared by diluting 5.00 ml of the 1000 ppm Zn standard to 50.00 ml. Solutions C-E are called "calibration standards" because they will be used to calibrate the atomic absorption spectrometer. a. Compare the solution concentrations expressed as ppm Zn and ppm Zn(NO3)2. Compare the concentrations expressed as M Zn and M Zn(NO3)2 - Which units allow easy conversion between chemical species (e.g. Zn and Zn(NO3)2)? - Which units express concentrations in numbers with easily expressed magnitudes? - Suppose you have an analyte for which you don't know the molar…arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY