Concept explainers
(a)
Interpretation:
The molecular formula of the compound with empirical formula
Concept introduction:
An empirical formula gives the simplest whole number ratio of atoms of each element present in a compound. The molecular formula tells the exact number of atoms of each element present in a compound.
Following are the steps to determine the molecular formula of a compound.
Step 1: Add the molar mass of each element multiplied by its number of atoms present in the empirical formula to obtain the empirical formula mass for the compound.
Step 2: Divide the molar mass of the compound by its empirical formula mass to obtain the whole number. The formula to calculate the whole number multiple is as follows:
Step 3: Multiply the whole number with the subscript of each element present in the empirical formula. This gives the molecular formula of the compound.
(b)
Interpretation:
The molecular formula of the compound with empirical formula
Concept introduction:
An empirical formula gives the simplest whole number ratio of atoms of each element present in a compound. The molecular formula tells the exact number of atoms of each element present in a compound.
Following are the steps to determine the molecular formula of a compound.
Step 1: Add the molar mass of each element multiplied by its number of atoms present in the empirical formula to obtain the empirical formula mass for the compound.
Step 2: Divide the molar mass of the compound by its empirical formula mass to obtain the whole number. The formula to calculate the whole number multiple is as follows:
Step 3: Multiply the whole number with the subscript of each element present in the empirical formula. This gives the molecular formula of the compound.
(c)
Interpretation:
The molecular formula of the compound with empirical formula
Concept introduction:
An empirical formula gives the simplest whole number ratio of atoms of each element present in a compound. The molecular formula tells the exact number of atoms of each element present in a compound.
Following are the steps to determine the molecular formula of a compound.
Step 1: Add the molar mass of each element multiplied by its number of atoms present in the empirical formula to obtain the empirical formula mass for the compound.
Step 2: Divide the molar mass of the compound by its empirical formula mass to obtain the whole number. The formula to calculate the whole number multiple is as follows:
Step 3: Multiply the whole number with the subscript of each element present in the empirical formula. This gives the molecular formula of the compound.
(d)
Interpretation:
The molecular formula of the compound with empirical formula
Concept introduction:
An empirical formula gives the simplest whole number ratio of atoms of each element present in a molecule. The molecular formula tells the exact number of atoms of each element present in a molecule.
Following are the steps to determine the molecular formula of a compound.
Step 1: Add the molar mass of each element multiplied by its number of atoms present in the empirical formula to obtain the empirical formula mass for the compound.
Step 2: Divide the molar mass of the compound by its empirical formula mass to obtain the whole number. The formula to calculate the whole number multiple is as follows:
Step 3: Multiply the whole number with the subscript of each element present in the empirical formula. This gives the molecular formula of the compound.

Want to see the full answer?
Check out a sample textbook solution
Chapter 3 Solutions
CHEMISTRY/ALEKS AND CONNECT
- A mixture of C7H12O2, C9H9OCl, biphenyl and acetone was put together in a gas chromatography tube. Please decide from the GC resutls which correspond to the peak for C7,C9 and biphenyl and explain the reasoning based on GC results. Eliminate unnecessary peaks from Gas Chromatography results.arrow_forwardIs the molecule chiral, meso, or achiral? CI .CH3 H₂C CIarrow_forwardPLEASE HELP ! URGENT!arrow_forward
- Identify priority of the substituents: CH3arrow_forwardHow many chiral carbons are in the molecule? OH F CI Brarrow_forwardA mixture of three compounds Phen-A, Acet-B and Rin-C was analyzed using TLC with 1:9 ethanol: hexane as the mobile phase. The TLC plate showed three spots of R, 0.1 and 0.2 and 0.3. Which of the three compounds (Phen-A; Acet-B or Rin-C) would have the highest (Blank 1), middle (Blank 2) and lowest (Blank 3) spot respectively? 0 CH: 0 CH, 0 H.C OH H.CN OH Acet-B Rin-C phen-A A A <arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





