EBK PRINCIPLES OF FOUNDATION ENGINEERIN
8th Edition
ISBN: 8220100547058
Author: Das
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 3.5P
To determine
Find the corrected penetration numbers at the various depths.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Refer to Problem 3.5. Using Eq. (3.22), determine the averagerelative density of the sand.
Determine the relative density at each depth using attached equation. Assume moderately compressible sand and hence Qc = 1.
Determine the relative density at each depth using attached equation. Assume moderately compressible sand and hence Qc = 1.
Chapter 3 Solutions
EBK PRINCIPLES OF FOUNDATION ENGINEERIN
Ch. 3 - Prob. 3.1PCh. 3 - Prob. 3.2PCh. 3 - Refer to Figure P3.3. Use Eqs. (3.10) and (3.11)...Ch. 3 - Prob. 3.4PCh. 3 - Prob. 3.5PCh. 3 - Prob. 3.6PCh. 3 - Prob. 3.7PCh. 3 - Prob. 3.8PCh. 3 - Prob. 3.9PCh. 3 - Prob. 3.10P
Ch. 3 - Prob. 3.11PCh. 3 - Following are the standard penetration numbers...Ch. 3 - Prob. 3.13PCh. 3 - Prob. 3.14PCh. 3 - Prob. 3.15PCh. 3 - Prob. 3.16PCh. 3 - Prob. 3.17PCh. 3 - Prob. 3.18PCh. 3 - Prob. 3.19PCh. 3 - Prob. 3.20PCh. 3 - Prob. 3.21PCh. 3 - Prob. 3.22PCh. 3 - Prob. 3.23PCh. 3 - Prob. 3.24PCh. 3 - Prob. 3.25PCh. 3 - Prob. 3.26PCh. 3 - Prob. 3.27P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- 3. Following are the results of a standard penetration test in fine dry sand. N60 Depth (m) 1.5 7 13 3.0 18 4.5 22 6.0 7.5 24 For, the sand deposit, assume the mean grain size, D50, to be 0.26 mm and the unit weight of sand to be 15.5kN/m3. Estimate the variation of relative density with depth using the correlation developed by Cubrinovski and Ishihara. Assume pas100kN/m2. denined frictionarrow_forwardThe following table gives the variation of the field standard penetration number in a sand deposit: The groundwater table is located at a depth of 12 . The dry unit weight of sand from 0 to a depth of 12 is 17.6 . Assume the mean grain size of the sand deposit to be about 0.8 . Estimate the variation of the relative density with depth for sand. Use the equation (Enter your answers to three significant figures.)arrow_forwardFollowing is the variation of the field standard penetration number in a sand deposit: The groundwater table is located at a depth of 6 . Given: the dry unit weight of sand from 0 to a depth of 6 is 16 , and the saturated unit weight of sand for depth 6 to 12 is 22.2 . Estimate an average peak soil friction angle. Use the equation (Enter your answer to three significant figures.)arrow_forward
- Following is the variation of the field standard penetration number () in a sand deposit: 1.5 6 3 8 4.5 9 6 8 7.5 13 9 14 The groundwater table is located at a depth of 6 . Given: the dry unit weight of sand from 0 to a depth of 6 is 19 , and the saturated unit weight of sand for depth 6 to 12 is 21.2 . Use the relationship given in the equation to calculate the corrected penetration numbers. (Round your answers to the nearest whole number.) 1.5 6 3 8 4.5 9 6 8 7.5 13 9 14arrow_forwardRefer to Problem 3.5. Using Eq. (3.28), determine the averagerelative density of the sand. Assume it is a fine sand.Use Eq. (3.13) to obtain (N1)60.arrow_forwardProblem attachedarrow_forward
- Repeat Problem 3.6 using Eq. (3.29).arrow_forward21 The results of a constant head permeability test for a fine sand are as follows: Diameter of the sample = 37 cm Length of sample = 92 cm Constant head difference = 78 cm Time of collection = 337 secs Weight of water collected = 375 grams Find the seepage velocity in cm/min. if the void ratio is 0.6. Round off to four decimal places.arrow_forwardThe standard penetration test results of a sand deposit at a certain site are given below in tabular form. The groundwater table in located at a depth of 2 m below the ground surface. The dry and saturated unit weights of sand are 17 kN/m³ and 19.0 kN/m', respectively. For an expected 10.8 earthquake magnitude M = 6 and maximum acceleration amax = 0.1 g, will liquefaction occur? Depth (m) NF (blows/30 cm) 1.5 8 3.0 7 4.5 12 6.0 15 7.5 17 9.0 17arrow_forward
- PROBLEM 2: During a constant-head permeability test on a sand sample, 260 x 10° mm³ of water were collected in 2 minutes. If the sample had a length of 100 mm, a diameter of 40 mm and a maintained head of 200mm. What is its coefficient of permeability? a. 0.769 mm/s b. 0.967 mm/s c. 1.321 mm/s d. 0.862 mm/sarrow_forwardA soil profile is shown in Figure P3.2 along with the standard penetration numbers in the clay layer. Use Eqs. (3.8) and (3.9) to determine the variation of cu and OCR with depth. What is the average value of cu and OCR?arrow_forwardQuestion Attachedarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningFundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781305081550
Author:Braja M. Das
Publisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning