EBK PRINCIPLES OF FOUNDATION ENGINEERIN
8th Edition
ISBN: 8220100547058
Author: Das
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 3.4P
To determine
Find the corrected penetration numbers at the various depths.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
The following table gives the variation of the field standard penetration number in a sand deposit:
The groundwater table is located at a depth of 12 . The dry unit weight of sand from 0 to a depth of 12 is 17.6 . Assume the mean grain size of the sand deposit to be about 0.8 . Estimate the variation of the relative density with depth for sand. Use the equation
(Enter your answers to three significant figures.)
3. Following are the results of a standard penetration test in fine dry sand.
N60
Depth (m)
1.5
7
13
3.0
18
4.5
22
6.0
7.5
24
For, the sand deposit, assume the mean grain size, D50, to be 0.26 mm and the
unit weight of sand to be 15.5kN/m3. Estimate the variation of relative density
with depth using the correlation developed by Cubrinovski and Ishihara.
Assume pas100kN/m2.
denined friction
Following is the variation of the field standard penetration number () in a sand deposit:
1.5
6
3
8
4.5
9
6
8
7.5
13
9
14
The groundwater table is located at a depth of 6 . Given: the dry unit weight of sand from 0 to a depth of 6 is 19 , and the saturated unit weight of sand for depth 6 to 12 is 21.2 . Use the relationship given in the equation
to calculate the corrected penetration numbers.
(Round your answers to the nearest whole number.)
1.5
6
3
8
4.5
9
6
8
7.5
13
9
14
Chapter 3 Solutions
EBK PRINCIPLES OF FOUNDATION ENGINEERIN
Ch. 3 - Prob. 3.1PCh. 3 - Prob. 3.2PCh. 3 - Refer to Figure P3.3. Use Eqs. (3.10) and (3.11)...Ch. 3 - Prob. 3.4PCh. 3 - Prob. 3.5PCh. 3 - Prob. 3.6PCh. 3 - Prob. 3.7PCh. 3 - Prob. 3.8PCh. 3 - Prob. 3.9PCh. 3 - Prob. 3.10P
Ch. 3 - Prob. 3.11PCh. 3 - Following are the standard penetration numbers...Ch. 3 - Prob. 3.13PCh. 3 - Prob. 3.14PCh. 3 - Prob. 3.15PCh. 3 - Prob. 3.16PCh. 3 - Prob. 3.17PCh. 3 - Prob. 3.18PCh. 3 - Prob. 3.19PCh. 3 - Prob. 3.20PCh. 3 - Prob. 3.21PCh. 3 - Prob. 3.22PCh. 3 - Prob. 3.23PCh. 3 - Prob. 3.24PCh. 3 - Prob. 3.25PCh. 3 - Prob. 3.26PCh. 3 - Prob. 3.27P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.Similar questions
- Following is the variation of the field standard penetration number in a sand deposit: The groundwater table is located at a depth of 6 . Given: the dry unit weight of sand from 0 to a depth of 6 is 16 , and the saturated unit weight of sand for depth 6 to 12 is 22.2 . Estimate an average peak soil friction angle. Use the equation (Enter your answer to three significant figures.)arrow_forwardDetermine the relative density at each depth using attached equation. Assume moderately compressible sand and hence Qc = 1.arrow_forwardDetermine the relative density at each depth using attached equation. Assume moderately compressible sand and hence Qc = 1.arrow_forward
- Refer to Problem 3.5. Using Eq. (3.22), determine the averagerelative density of the sand.arrow_forwardThe standard penetration test results of a sand deposit at a certain site are given below in tabular form. The groundwater table in located at a depth of 2 m below the ground surface. The dry and saturated unit weights of sand are 17 kN/m³ and 19.0 kN/m', respectively. For an expected 10.8 earthquake magnitude M = 6 and maximum acceleration amax = 0.1 g, will liquefaction occur? Depth (m) NF (blows/30 cm) 1.5 8 3.0 7 4.5 12 6.0 15 7.5 17 9.0 17arrow_forwardA soil profile is shown in Figure P3.2 along with the standard penetration numbers in the clay layer. Use Eqs. (3.8) and (3.9) to determine the variation of cu and OCR with depth. What is the average value of cu and OCR?arrow_forward
- Refer to Problem 3.5. Using Eq. (3.28), determine the averagerelative density of the sand. Assume it is a fine sand.Use Eq. (3.13) to obtain (N1)60.arrow_forwardProblem attachedarrow_forwardA standard penetration test is carried out in sand where the efficiency of the hammer nH =70%. If the measured N-value at 30 ft depth is 24, find N60 and (N1)60. The unit weight of the sand is 115.0 lb/ft3. Assume nB = nS = nR =1.arrow_forward
- Question Attachedarrow_forwardFollowing are the results of a standard penetration test in sand. Determine the corrected standard penetration number, (N1)60, at various depths. Note that the water table was not observed within a depth of 10.5 m below the ground surface. Assume that the average unit weight of sand is 17.3 kN/m3. Depth (m) N60 1.5 8 3.0 7 4.6 12 6.0 14 7.5 13arrow_forwardQuestion Workspace A cone penetration test was carried out in normally consolidated sand, for which the results are summarized below: Depth Cone resistance, The average unit weight of the sand is . Assume moderately compressible sand and hence . Determine the relative density at each depth using the equation below. (Enter your answers to three significant figures.) Deptharrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Geotechnical Engineering (MindTap C...Civil EngineeringISBN:9781305970939Author:Braja M. Das, Khaled SobhanPublisher:Cengage LearningFundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning
Principles of Geotechnical Engineering (MindTap C...
Civil Engineering
ISBN:9781305970939
Author:Braja M. Das, Khaled Sobhan
Publisher:Cengage Learning
Fundamentals of Geotechnical Engineering (MindTap...
Civil Engineering
ISBN:9781305635180
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning