Applied Fluid Mechanics
7th Edition
ISBN: 9780133414622
Author: UNTENER
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 3, Problem 3.51PP
A storage tank for sulfuric acid is
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A torque of magnitude T = 12 kNm is applied to the end of a tank containing compressed air
under a pressure of 8 MPa (Figure Q1). The tank has a 180 mm inner diameter and a 12 mm
wall thickness. As a result of several tensile tests, it has been found that tensile yeild strength
is σy = 250 MPa for thr grade of steel used. Determine the factor of safety with respect to yeild,
using:
(a) The maximum shearing stress theory
(b) The maximum distortion energy theory
T
Figure Q1
An external pressure of 12 MPa is applied to a closed-end thick cylinder of internal diameter
150 mm and external diameter 300 mm. If the maximum hoop stress on the inner surface of the
cylinder is limited to 30 MPa:
(a) What maximum internal pressure can be applied to the cylinder?
(b) Sketch the variation of hoop and radial stresses across the cylinder wall.
(c) What will be the change in the outside diameter when the above pressure is applied?
[Take E = 207 GPa and v = 0.29]
so
A
4
I need a detailed drawing with explanation
し
i need drawing in solution
motion is as follows;
1- Dwell 45°.
Plot the displacement diagram for a cam with flat follower of width 14 mm. The required
2- Rising 60 mm in 90° with Simple Harmonic Motion.
3- Dwell 90°.
4- Falling 60 mm for 90° with Simple Harmonic Motion.
5- Dwell 45°.
cam is 50 mm.
Then design the cam profile to give the above displacement diagram if the minimum circle diameter of the
か
---2-125
750 x2.01
98P
Chapter 3 Solutions
Applied Fluid Mechanics
Ch. 3 - Write the expression for computing the pressure in...Ch. 3 - Define absolute pressureCh. 3 - Define gage pressureCh. 3 - Define atmospheric pressureCh. 3 - Write the expression relating gage pressure,...Ch. 3 - State whether statements 3.6-3.10 are (or can be)...Ch. 3 - State whether statements 3.6-3.10 are (or can be)...Ch. 3 - State whether statements 3.6-3.10 are (or can be)...Ch. 3 - State whether statements 3.6-3.10 are (or can be)...Ch. 3 - State whether statements 3.6-3.10 are (or can be)...
Ch. 3 - State whether statements 3.6-3.10 are (or can be)...Ch. 3 - State whether statements 3.6-3.10 are (or can be)...Ch. 3 - State whether statements 3.6-3.10 are (or can be)...Ch. 3 - Problems 3.14-3.33 require that you convert the...Ch. 3 - Problems 3.14-3.33 require that you convert the...Ch. 3 - Problems 3.14-3.33 require that you convert the...Ch. 3 - Problems 3.14-3.33 require that you convert the...Ch. 3 - Problems 3.14-3.33 require that you convert the...Ch. 3 - Problems 3.14-3.33 require that you convert the...Ch. 3 - Problems 3.14-3.33 require that you convert the...Ch. 3 - Problems 3.14-3.33 require that you convert the...Ch. 3 - Problems 3.14-3.33 require that you convert the...Ch. 3 - Problems 3.14-3.33 require that you convert the...Ch. 3 - Problems 3.14-3.33 require that you convert the...Ch. 3 - Problems 3.14-3.33 require that you convert the...Ch. 3 - Problems 3.14-3.33 require that you convert the...Ch. 3 - Problems 3.14-3.33 require that you convert the...Ch. 3 - Problems 3.14-3.33 require that you convert the...Ch. 3 - Problems 3.14-3.33 require that you convert the...Ch. 3 - Problems 3.14-3.33 require that you convert the...Ch. 3 - Problems 3.14-3.33 require that you convert the...Ch. 3 - Problems 3.14-3.33 require that you convert the...Ch. 3 - Problems 3.14-3.33 require that you convert the...Ch. 3 - If milk has a specific gravity of 1.08, what is...Ch. 3 - The pressure in an unknown fluid at a depth of 4.0...Ch. 3 - The pressure at the bottom of a tank of propyl...Ch. 3 - When you dive to a depth of 12.50 ft in seawater,...Ch. 3 - A water storage tank is on the roof of a factory...Ch. 3 - An open tank contains ethylene glycol at 25C....Ch. 3 - For the tank of ethylene glycol described in...Ch. 3 - Figure 3.19 shows a diagram of the hydraulic...Ch. 3 - Figure 3.20 shows a clothes washing machine The...Ch. 3 - An airplane is flying at 10.6km altitude. In its...Ch. 3 - For the tank shown in Fig. 3.21, determine the...Ch. 3 - For the tank shown in Fig. 3.21, determine the...Ch. 3 - For the tank shown in Fig. 3.21. determine the...Ch. 3 - For the tank shown in Fig. 3.21 determine the...Ch. 3 - For the tank in Fig. 3.22, compute the depth of...Ch. 3 - For the tank in Fig. 3.22, compute the depth of...Ch. 3 - Figure 3.22 represents an oil storage drum that is...Ch. 3 - A storage tank for sulfuric acid is 1.5m in...Ch. 3 - A storage drum for crude oil ( sg=0.89 ) is 32 ft...Ch. 3 - The greatest known depth in the ocean is...Ch. 3 - Figure 3.23 shows a closed tank that contains...Ch. 3 - Figure 3.24 shows a closed container holding water...Ch. 3 - Determine the pressure at the bottom of the tank...Ch. 3 - Describe a simple J-tube manometerCh. 3 - Describe a differential U-tube manometer.Ch. 3 - Describe a well-type manometer.Ch. 3 - Describe an inclined well-type manometer.Ch. 3 - Describe a compound manometer.Ch. 3 - Water is in the pipe shown in Fig. 3.26Calculate...Ch. 3 - For the differential manometer shown in Fig. 3.27,...Ch. 3 - For the manometer shown in Fig. 3.28, calculate...Ch. 3 - For the manometer shown in Fig. 3.29, calculate...Ch. 3 - For the manometer shown in Fig. 3.30, calculate...Ch. 3 - For the compound manometer shown in Fig.3.31,...Ch. 3 - For the compound differential manometer in...Ch. 3 - Figure 3.33 shows a manometer being used to...Ch. 3 - For the well-type manometer in Fig. 3.34,...Ch. 3 - Figure 3.35 shows an inclined well-type manometer...Ch. 3 - a. Determine the gage pressure at point A in Fig....Ch. 3 - What is the function of a barometer?Ch. 3 - Describe the construction of a barometer.Ch. 3 - Why is mercury a convenient fluid to use in a...Ch. 3 - If water were to be used instead of mercury in a...Ch. 3 - What is the barometric pressure reading in inches...Ch. 3 - What is the barometric pressure reading in...Ch. 3 - Why must a barometric pressure reading be...Ch. 3 - By how much would the barometric pressure reading...Ch. 3 - Denver, Colorado, is called the "Mile-High City"...Ch. 3 - The barometric pressure is reported to be 28.6 in...Ch. 3 - A barometer indicates the atmospheric pressure to...Ch. 3 - What would be the reading of a barometer in inches...Ch. 3 - Prob. 3.85PPCh. 3 - The pressure in a heating duct is measured to be...Ch. 3 - The pressure in a ventilation duct at the inlet to...Ch. 3 - The pressure in an air conditioning duct is...Ch. 3 - The pressure in a compressed natural gas line is...Ch. 3 - The pressure in a vacuum chamber is 68.2 kPa....Ch. 3 - The pressure in a vacuum chamber is 12.6 psig....Ch. 3 - Prob. 3.92PPCh. 3 - Prob. 3.93PPCh. 3 - A passive solar water heater is to be installed on...Ch. 3 - The elevated tank similar to the one shown in Fig....Ch. 3 - Prob. 3.96PPCh. 3 - A concrete form used to pour a basement wall is to...Ch. 3 - An environmental instrumentation package is to be...Ch. 3 - Prob. 3.99PPCh. 3 - Prob. 3.100PPCh. 3 - A meteorologist reports a "high pressure system"...Ch. 3 - What is the pressure, in psig, at the bottom of a...Ch. 3 - If air has a constant specific weight of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Figure below shows a link mechanism in which the link OA rotates uniformly in an anticlockwise direction at 10 rad/s. the lengths of the various links are OA=75 mm, OB-150 mm, BC=150 mm, CD-300 mm. Determine for the position shown, the sliding velocity of D. A 45 B Space Diagram o NTS (Not-to-Scale) C Darrow_forwardI need a detailed drawing with explanation so Solle 4 يكا Pax Pu + 96** motion is as follows; 1- Dwell 45°. Plot the displacement diagram for a cam with flat follower of width 14 mm. The required 2- Rising 60 mm in 90° with Simple Harmonic Motion. 3- Dwell 90°. 4- Falling 60 mm for 90° with Simple Harmonic Motion. 5- Dwell 45°. cam is 50 mm. Then design the cam profile to give the above displacement diagram if the minimum circle diameter of the 55 ---20125 750 X 2.01 1989arrow_forwardAshaft fitted with a flywheel rotates at 300 rpm. and drives a machine. The torque required to drive the machine varies in a cyclic manner over a period of 2 revolutions. The torque drops from 20,000 Nm to 10,000 Nm uniformly during 90 degrees and remains constant for the following 180 degrees. It then rises uniformly to 35,000 Nm during the next 225 degrees and after that it drops to 20,000 in a uniform manner for 225 degrees, the cycle being repeated thereafter. Determine the power required to drive the machine and percentage fluctuation in speed, if the driving torque applied to the shaft is constant and the mass of the flywheel is 12 tonnes with radius of gyration of 500 mm. What is the maximum angular acceleration of the flywheel. 35,000 TNM 20,000 10,000 0 90 270 495 Crank angle 8 degrees 720arrow_forward
- chanism shown in figure below, the crank OA rotates at 60 RPM counterclockwise. The velocity diagram is also drawn to scale (take dimensions from space diagram). Knowing that QCD is rigid plate, determine: a. Linear acceleration of slider at B, b. Angular acceleration of the links AC, plate CQD, and BD. D Space Diagram Scale 1:10 A ES a o,p,g b Velocity Diagram Scale 50 mm/(m/s) darrow_forwardA thick closed cylinder, 100 mm inner diameter and 200 mm outer diameter is subjected to an internal pressure of 230 MPa and outer pressure of 70 MPa. Modulus of elasticity, E=200 GPa. and Poisson's ratio is 0.3, determine: i) The maximum hoop stress ii) The maximum shear stress iii) The new dimension of the outer diameter due to these inner and outer pressures.arrow_forwardA ә レ shaft fitted with a flywheel rotates at 300 rpm. and drives a machine. The torque required to drive the machine varies in a cyclic manner over a period of 2 revolutions. The torque drops from 20,000 Nm to 10,000 Nm uniformly during 90 degrees and remains constant for the following 180 degrees. It then rises uniformly to 35,000 Nm during the next 225 degrees and after that it drops to 20,000 in a uniform manner for 225 degrees, the cycle being repeated thereafter. Determine the power required to drive the machine and percentage fluctuation in speed, if the driving torque applied to the shaft is constant and the mass of the flywheel is 12 tonnes with radius of gyration of 500 mm. What is the maximum angular acceleration of the flywheel. 35,000 TNm 20,000 10,000 495 Crank angle 8 degrees 270 0 90 か ---20125 750 X 2.01 44 720 sarrow_forward
- The gas tank is made from A-36 steel (σy = 250 MPa) and has an inner diameter of 3.50 m. If the tank is designed to withstand a pressure of 1.2 MPa, determine the required minimum wall thickness to the nearest millimeter using (a) The maximum-shear-stress theory (b) Maximum distortion- energy theory. Apply a factor of safety of 1.5 against yielding.arrow_forwardә レ Figure below shows a link mechanism in which the link OA rotates uniformly in an anticlockwise direction at 10 rad/s. the lengths of the various links are OA=75 mm, OB-150 mm, BC=150 mm, CD-300 mm. Determine for the position shown, the sliding velocity of D. A A B # Space Diagram o NTS (Not-to-Scale) C 10 =--20125 735) 750 x2.01 اهarrow_forward2 レ Tanism in which the link OA mm. O anticlockwise direction at 10 rad/s, the lengths of the various links are OA=75mm, OB=150mm, BC=150mm,CD=300mm. Determine for the position shown, the sliding velocity of D. A A Space Diagram o NT$ (Not-to-Scale) B # C か 750 x2.01 165 79622arrow_forward
- Ashaft fitted with a flywheel rotates at 300 rpm. and drives a machine. The torque required to drive the machine varies in a cyclic manner over a period of 2 revolutions. The torque drops from 20,000 Nm to 10,000 Nm uniformly during 90 degrees and remains constant for the following 180 degrees. It then rises uniformly to 35,000 Nm during the next 225 degrees and after that it drops to 20,000 in a uniform manner for 225 degrees, the cycle being repeated thereafter. Determine the power required to drive the machine and percentage fluctuation in speed, if the driving torque applied to the shaft is constant and the mass of the flywheel is 12 tonnes with radius of gyration of 500 mm. What is the maximum angular acceleration of the flywheel. 35,000 TNM 20,000 10,000 0 90 270 495 Crank angle 8 degrees 720arrow_forwardFigure below shows a link mechanism in which the link OA rotates uniformly in an anticlockwise direction at 10 rad/s. the lengths of the various links are OA=75 mm, OB-150 mm, BC=150 mm, CD-300 mm. Determine for the position shown, the sliding velocity of D. A 45 B Space Diagram o NTS (Not-to-Scale) C Darrow_forwardmotion is as follows; 1- Dwell 45°. Plot the displacement diagram for a cam with flat follower of width 14 mm. The required 2- Rising 60 mm in 90° with Simple Harmonic Motion. 3- Dwell 90°. 4- Falling 60 mm for 90° with Simple Harmonic Motion. 5- Dwell 45°. Then design the cam profile to give the above displacement diagram if the minimum circle diameter of the cam is 50 mm.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L
International Edition---engineering Mechanics: St...
Mechanical Engineering
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:CENGAGE L
Physics 33 - Fluid Statics (1 of 10) Pressure in a Fluid; Author: Michel van Biezen;https://www.youtube.com/watch?v=mzjlAla3H1Q;License: Standard YouTube License, CC-BY