The Basic Practice of Statistics
The Basic Practice of Statistics
8th Edition
ISBN: 9781319042578
Author: David S. Moore, William I. Notz, Michael A. Fligner
Publisher: W. H. Freeman
Question
Book Icon
Chapter 3, Problem 3.47E

(a)

To determine

To obtain: The proportion of months with returns greater than 0 and the proportion of months with returns greater than 4%.

(a)

Expert Solution
Check Mark

Answer to Problem 3.47E

The proportion of months with returns greater than 0 is 0.5832 and proportion of months with returns greater than 4% is 0.2206.

Explanation of Solution

Given info:

The distribution of the 369 monthly returns follows a normal distribution with mean of 0.84% and standard deviation of 4.097%.

Calculation:

For proportion of months with returns greater than 0:

Define the random variable x as percentage monthly returns.

The formula for the standardized score is,

z=xμσ

The months with returns greater than 0 is denoted as x>0 .

Subtract the mean and then divide by the standard deviation to transform the value of x into standard normal z.

x0.844.097>00.844.097>0.844.097z>0.21

Where, the standardized score z=x0.844.097

The proportion of months with returns greater than 0, is obtained by finding the area to the right of –0.21 but, the Table A: Standard normal cumulative proportions apply only for cumulative areas from the left.

Use Table A: Standard normal cumulative proportions to find the area to the left of –0.21.

Procedure:

  • Locate –0.2 in the left column of the A-2 Table.
  • Obtain the value in the corresponding row below 0.01.

That is, P(z<0.21)=0.4168

The area to the right of –0.21 is,

P(z>0.21)=1P(z<0.21)=10.4168=0.5832

Thus, the proportion of months with returns greater than 0 is 58.32%.

For proportion of months with returns greater than 4%:

The months with returns greater than 4% is denoted as x>4 .

Subtract the mean and then divide by the standard deviation to transform the value of x into standard normal z.

x0.844.097>40.844.097>3.164.097z>0.77

Where, the standardized score z=x0.844.097

The proportion of months with returns greater than 4% is obtained by finding the area to the right of 0.77. But, the Table A: Standard normal cumulative proportions apply only for cumulative areas from the left.

Use Table A: Standard normal cumulative proportions to find the area to the left of 0.77.

Procedure:

  • Locate 0.7 in the left column of the A-2 Table.
  • Obtain the value in the corresponding row below 0.07.

That is, P(z<0.77)=0.7794

The area to the right of 0.77 is,

P(z>0.77)=1P(z<0.77)=10.7794=0.2206

Thus, the proportion of months with returns greater than 4% is 22.06%.

(b)

To determine

To obtain: The proportion of actual returns greater than 0 and the proportion of actual

returns greater than 4%.

To check: The whether the results suggest that N(0.84, 4.097) provides a good approximation to the distribution of returns over this period.

(b)

Expert Solution
Check Mark

Answer to Problem 3.47E

The proportion of actual returns greater than 0 is 0.6264 and the proportion of actual returns greater than 4% is 0.2213.

Yes, results suggest that N(0.84, 4.097) provides a good approximation to the distribution of returns over this period.

Explanation of Solution

Given info:

The data shows the percentage of returns on common stocks. From the data, the total number of returns is 348, the actual returns greater than 0 is 218 and the actual returns greater than 4% is 77.

Calculation:

For proportion of actual returns greater than 0:

The formula to find the proportion of actual returns greater than 0 is,

Proportion of actual returns greater than 0  = Actual returns greater than 0Total number of returns

Substitute 218 for ‘Actual returns greater than 0’, 348 for ‘Total number of returns’.

Proportion of actual returns greater than 0 = 218348=0.6264

Thus, the proportion of actual returns greater than 0 is 0.6264.

For proportion of actual returns greater than 4%:

The formula to find the proportion of actual returns greater than 4% is,

Proportion of actual returns greater than 4%  = Actual returns greater than 4%Total number of returns

Substitute 77 for ‘Actual returns greater than 4%’, 348 for ‘Total number of returns’.

Proportion of actual returns greater than 4% = 77348=0.2213

Thus, the proportion of actual returns greater than 4% is 0.2213.

Comparison:

The percentage of months with returns greater than 0 is 58.32% and the percentage of months with returns greater than 4% is 22.06%.

Using normal distribution, the percentage of months with returns greater than 0 is 62.64% and the percentage of months with returns greater than 4% is 22.13%. Therefore, the percentages are approximately equal.

Thus, the results suggest that N(0.84, 4.097) provides a good approximation to the distribution of returns over this period.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Two measurements are made of some quantity. For the first measurement, the average is 74.4528, the RMS error is 6.7441, and the uncertainty of the mean is 0.9264. For the second one, the average is 76.8415, the standard deviation is 8.3348, and the uncertainty of the mean is 1.1448. The expected value is exactly 75. 13. Express the first measurement in public notation. 14. Is there a significant difference between the two measurements? 1 15. How does the first measurement compare with the expected value? 16. How does the second measurement compare with the expected value?
A hat contains slips of paper numbered 1 through 6. You draw two slips of paper at random from the hat,without replacing the first slip into the hat.(a) (5 points) Write out the sample space S for this experiment.(b) (5 points) Express the event E : {the sum of the numbers on the slips of paper is 4} as a subset of S.(c) (5 points) Find P(E)(d) (5 points) Let F = {the larger minus the smaller number is 0}. What is P(F )?(e) (5 points) Are E and F disjoint? Why or why not?(f) (5 points) Find P(E ∪ F )
In addition to the in-school milk supplement program, the nurse would like to increase the use of daily vitamin supplements for the children by visiting homes and educating about the merits of vitamins. She believes that currently, about 50% of families with school-age children give the children a daily megavitamin. She would like to increase this to 70%. She plans a two-group study, where one group serves as a control and the other group receives her visits. How many families should she expect to visit to have 80% power of detecting this difference? Assume that drop-out rate is 5%.
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc
Text book image
Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning
Text book image
Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning
Text book image
Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON
Text book image
The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman
Text book image
Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman