SCIENCE+ENGR.OF MTRLS.-MINDTAP (6 MTHS)
7th Edition
ISBN: 9781305499119
Author: ASKELAND
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 3.3P
To determine
Two applications of single crystal.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
I need problems 4, 5, and 6 solved pertaining to the print provided below.
Problem 3:
One hollow cylinder is shrink-fitted inside another. Both cylinders have length L and both the flat faces of each
cylinder are constrained in the axial direction. They are free to move in radial and tangential directions. Both
cylinders are made of the same material steel. New steel material will be created.
Cylinder
Inner Cylinder
FIGURE 1 SHRINK FIT ASSEMBLY
Outside Cylinder
Steel: E = 30 x 106 psi
Inside Radius
r;=4"
R₁=6"
FIGURE 2 EXPLODED VIEW OF SHRINK
FIT ASSEMBLY
Outside Radius
r=6.005"
R₂=8"
Length
L = 5"
L = 5"
An internal pressure P = 30,000 psi is applied on the inner surface of the inner cylinder.
What to Submit:
1. Find the tangential stress distribution at the outside surface of the outer cylinder (r = 8").
2. Find the tangential stress distribution at the inner surface of the inner cylinder (r = 4")
3. Find the contact pressure developed at the interference location.
Using the tensile test simulation tool,
a. generate the stress-strain curve for aluminum
b. Indicate the following points in the stress-strain curve for aluminum and give the corresponding values:
limit of proportionality
elastic limit
0.2% offset yield stress (include the graph illustrating how this was determined)
ultimate stress
fracture stress
c. Calculate modulus of elasticity.
d. compare aluminum with nylon (include the related graph) and answer the following:
Which has higher tensile strength? Provide the necessary values to support the answer.
Which is stiffer? Support your answer with calculations.
Chapter 3 Solutions
SCIENCE+ENGR.OF MTRLS.-MINDTAP (6 MTHS)
Ch. 3 - Prob. 3.1PCh. 3 - Prob. 3.2PCh. 3 - Prob. 3.3PCh. 3 - What is a polycrystalline material?Ch. 3 - Prob. 3.5PCh. 3 - Prob. 3.6PCh. 3 - Prob. 3.7PCh. 3 - Prob. 3.8PCh. 3 - Prob. 3.9PCh. 3 - Prob. 3.10P
Ch. 3 - Prob. 3.11PCh. 3 - Prob. 3.12PCh. 3 - Prob. 3.13PCh. 3 - Prob. 3.14PCh. 3 - Prob. 3.15PCh. 3 - Prob. 3.16PCh. 3 - Prob. 3.17PCh. 3 - Prob. 3.18PCh. 3 - Prob. 3.19PCh. 3 - Prob. 3.20PCh. 3 - Prob. 3.21PCh. 3 - Prob. 3.22PCh. 3 - Prob. 3.23PCh. 3 - Prob. 3.24PCh. 3 - Prob. 3.25PCh. 3 - Aluminum foil used to package food isapproximately...Ch. 3 - Prob. 3.27PCh. 3 - Prob. 3.28PCh. 3 - Thoria or thonrium dioxide can be describedas an...Ch. 3 - Prob. 3.30PCh. 3 - Prob. 3.31PCh. 3 - Prob. 3.32PCh. 3 - Prob. 3.33PCh. 3 - Prob. 3.34PCh. 3 - Prob. 3.35PCh. 3 - Prob. 3.36PCh. 3 - Prob. 3.37PCh. 3 - Prob. 3.38PCh. 3 - Prob. 3.39PCh. 3 - Prob. 3.40PCh. 3 - Prob. 3.41PCh. 3 - Prob. 3.42PCh. 3 - Prob. 3.43PCh. 3 - Prob. 3.44PCh. 3 - Prob. 3.45PCh. 3 - Prob. 3.46PCh. 3 - Prob. 3.47PCh. 3 - Prob. 3.48PCh. 3 - Prob. 3.49PCh. 3 - Prob. 3.50PCh. 3 - Prob. 3.51PCh. 3 - Prob. 3.52PCh. 3 - Prob. 3.53PCh. 3 - Prob. 3.54PCh. 3 - Prob. 3.55PCh. 3 - Prob. 3.56PCh. 3 - Prob. 3.57PCh. 3 - Prob. 3.58PCh. 3 - Prob. 3.59PCh. 3 - Prob. 3.60PCh. 3 - Prob. 3.61PCh. 3 - Prob. 3.62PCh. 3 - Prob. 3.63PCh. 3 - Prob. 3.64PCh. 3 - Prob. 3.65PCh. 3 - Prob. 3.66PCh. 3 - Prob. 3.67PCh. 3 - Prob. 3.68PCh. 3 - Prob. 3.69PCh. 3 - Prob. 3.70PCh. 3 - Prob. 3.71PCh. 3 - Prob. 3.72PCh. 3 - Prob. 3.73PCh. 3 - Prob. 3.74PCh. 3 - Prob. 3.75PCh. 3 - Prob. 3.76PCh. 3 - Determine the planar density and packing fraction...Ch. 3 - Prob. 3.78PCh. 3 - Prob. 3.79PCh. 3 - Prob. 3.80PCh. 3 - Prob. 3.81PCh. 3 - Prob. 3.82PCh. 3 - Prob. 3.83PCh. 3 - Prob. 3.84PCh. 3 - Prob. 3.85PCh. 3 - Prob. 3.86PCh. 3 - Prob. 3.87PCh. 3 - Prob. 3.88PCh. 3 - Prob. 3.89PCh. 3 - Prob. 3.90PCh. 3 - Prob. 3.91PCh. 3 - MgO, which has the sodium chloride structure, has...Ch. 3 - Prob. 3.93PCh. 3 - Prob. 3.94PCh. 3 - Prob. 3.95PCh. 3 - Prob. 3.96PCh. 3 - Prob. 3.97PCh. 3 - Prob. 3.98PCh. 3 - Prob. 3.99PCh. 3 - Prob. 3.100PCh. 3 - Prob. 3.101DPCh. 3 - You want to design a material for making kitchen...Ch. 3 - Prob. 3.103CPCh. 3 - Prob. 3.104CPCh. 3 - Prob. 3.1KP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 3. Two brass rods (one square, one circular) are extruded; initial and final dimensions are provided below. Which part is expected to have the greater tensile strength? Which part is expected to have the greater ductility? Part Initial Dimensions Final Dimensions Cylindrical D=2.5 in D = 2.35 in. Square 4 × 4 in. 3.9 × 3.9 in.arrow_forwardQuestion 12 What is the resulting modulus of In (2 +3 j)?arrow_forwardConstruct Pourbaix diagram for aluminium; standard molar free energy of: Al3+ = - 481200 J/mol, Al2O3 = - 1608900 J/mol, AlO2- = - 839800 use 1 Molar Al3+arrow_forward
- The figure shown below (Fig. 2) is a schematic representation of a scissor jack in two different positions. The maximum load that this mechanism must withstand is 800 kg. 4 are proposed different materials to make the jack arms and spindle. The mechanical properties and some Physical characteristics of each material are shown in Table 1. a) Based on the properties of each material and the cross section of the arms and the screw, Propose what would be the most suitable material for its manufacture. The length of each arm is 150 mm. The stress on the arms and the spindle must not exceed the yield strength of the material selected for neither of the two analysis positions. b) Using the mechanical properties of the material you selected, calculate the change in dimension that the arms and the spindle of the jack were tested for the two analysis positions. The length of the spindle is 280 mm.arrow_forwardI did a torsion test to experimentally calculate the brass modulus of rigidity. My experimental modulus value is lower than the published. What could have caused this?arrow_forwardDefine the term Modulus of Rigidity?arrow_forward
- 3. How to locate a long cylindrical component? Please use a drawing for the illustration and point out whatdegrees of freedom are restricted .arrow_forwardA titanium shaft has a starting diameter = 19.50 mm. It is to be inserted into a hole in an expansion fit assembly operation. To be readily inserted, the shaft must be reduced in diameter by cooling. Determine the temperature to which the shaft must be reduced from room temperature (20 degree's C) in order to reduce its diameter to 19.48 mm. Use table 4.1 from the book for reference. Round to the nearest 10th of a Celcius.arrow_forwardWhat’s the answers and explanation for this please ?arrow_forward
- 2. Another cylindrical component is madeof Enfennering ceramic Al203 but with different dimensions. Here, l=30 cm and the diameter is 4 cm. Assume the same Weibull modulus of 9. Calculate the level of the tensile strength for the following probability of failures: a. Pr (V) = 0.1 b. Pr (Vo) = 0.01 c. What is the survival probability and the failure probability of this component if a stress of 200 MPa is applied?arrow_forwardDefine the term Percent Elongation?arrow_forwardCompare the torsional rigidities of the following sections: (a) a hollow tube 30 mm outside diameter and 1.5 mm thick (b) the same tube split along its length with a 1 mm gap (c) an equal leg angle section having the same perimeter and thickness as (b) (d) a square box section with side length 30 mm and I .5 mm wall thickness (e) a rectangular solid bar, side ratio 2.5 to I. having the same metal cross-sectional area as the hollow tube. Compare also the maximum stresses arising in each case.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY