Physics for Scientists and Engineers
Physics for Scientists and Engineers
10th Edition
ISBN: 9781337553278
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 3, Problem 33P

In Figure P3.33, the line segment represents a path from the point with position vector ( 5 i ^ + 3 j ^ ) m to the point with location ( 16 i ^ + 12 j ^ ) m . Point Ⓐ is along this path, a fraction f of the way to the destination. (a) Find the position vector of point Ⓐ in terms of f. (b) Evaluate the expression from part (a) for f = 0. (c) Explain whether the result in part (b) is reasonable. (d) Evaluate the expression for f = 1. (c) Explain whether the result in part (d) is reasonable.

Figure P3.33 Point Ⓐ is a fraction f of the distance from the initial point (5,3) to the final point (16, 12).

Chapter 3, Problem 33P, In Figure P3.33, the line segment represents a path from the point with position vector (5i+3j)m to

(a)

Expert Solution
Check Mark
To determine
The position vector of point A in terms of fraction f .

Answer to Problem 33P

The position vector of point A in terms of fraction f is A=[(5+11f)i^+(3+9f)j^]m .

Explanation of Solution

Section 1:

To determine: The horizontal position of point A that must be at a fraction f of the destination.

Answer: The horizontal position of point A that must be at a fraction f of the destination is (5+11f)m .

Explanation:

Given information:

The initial position vector is (5i^+3j^)m and final position vector is (16i^+12j^)m .

Formula to calculate the x-position of point A that must be at a fraction f of the destination is,

x=x1+f(x2x1)

  • x is the position of the point A in x-direction.
  • x1 is the initial position in x-direction.
  • x2 is the final position in x-direction.
  • f is the fraction of the destination path.

Substitute 5m for x1 and 16m for x2 .

x=5m+f(16m5m)=5m+f(11m)=(5+11f)m

Section 2:

To determine: The vertical position of point A that must be at a fraction f of the destination.

Answer: The vertical position of point A that must be at a fraction f of the destination is (3+9f)m .

Explanation:

Given information:

The initial position vector is (5i^+3j^)m and final position vector is (16i^+12j^)m .

Formula to calculate the y-position of point A that must be at a fraction of f of the destination is,

y=y1+f(y2y1)

  • y is the position of the point A in y-direction.
  • y1 is the initial position in y-direction.
  • y2 is the final position in y-direction.
  • f is the fraction of the destination path.

Substitute 3m for y1 and 12m for y2 .

y=3m+f(13m3m)=3m+f(9m)=(3+9f)m

Section 3:

To determine: The position vector of the point A that must lie at a fraction f on the destination path.

Answer: The position vector of the point A that must lie at a fraction f on the destination path is A=[(5+11f)i^+(3+9f)j^]m .

Explanation:

Given information:

The initial position vector is (5i^+3j^)m and final position vector is (16i^+12j^)m .

Formula to calculate the position vector of the point A that must lie at a fraction f on the destination path is,

A=xi^+yj^

Substitute (5+11f)m for x and (3+9f)m for y to find A .

A=[(5+11f)i^+(3+9f)j^]m

Conclusion:

Therefore, position vector of point A in terms of fraction f is A=[(5+11f)i^+(3+9f)j^]m .

(b)

Expert Solution
Check Mark
To determine
The position vector of point A for f=0 .

Answer to Problem 33P

The position vector of point A for f=0 is A=[5i^+3j^]m .

Explanation of Solution

Given information:

The initial position vector is (5i^+3j^)m and final position vector is (16i^+12j^)m .

The position vector of point A in terms of fraction f is,

A=[(5+11f)i^+(3+9f)j^]m .

Substitute 0 for f in the above expression.

A=[(5+11×0)i^+(3+9×0)j^]m=[(5+0)i^+(3+0)j^]=5i^+3j^

Conclusion:

Therefore, position vector of point A for f=0 is A=[5i^+3j^]m .

(c)

Expert Solution
Check Mark
To determine
Whether the position vector of point A for f=0 is reasonable.

Explanation of Solution

Introduction: The position vector described the position of an object relative to a fixed reference point.

Explanation:

Given information:

The initial position vector is (5i^+3j^)m and final position vector is (16i^+12j^)m .

The position vector of point A in terms of fraction f is,

A=[(5+11f)i^+(3+9f)j^]m

When the value of f is zero then the position vector of point A becomes,

A=[5i^+3j^]m

This position vector is similar to the initial position vector of the destination path. So, if the value of f is zero then the point A move to the initial point that really exist.

Conclusion:

Therefore, position vector of point A for f=0 is reasonable because the position of point A is shift to the starting point of the destination path.

(d)

Expert Solution
Check Mark
To determine
The position vector of point A for f=1 .

Answer to Problem 33P

The position vector of point A for f=1 is 16i^+12j^ .

Explanation of Solution

Given information:

The initial position vector is (5i^+3j^)m and final position vector is (16i^+12j^)m .

The position vector of point A in terms of fraction f is,

A=[(5+11f)i^+(3+9f)j^]m

Substitute 1 for f in the above expression.

A=[(5+11×1)i^+(3+9×1)j^]m=[(5+11)i^+(3+9)j^]=16i^+12j^

Conclusion:

Therefore, position vector of point A for f=1 is 16i^+12j^ .

(e)

Expert Solution
Check Mark
To determine
Whether the position vector of point A for f=1 is reasonable.

Explanation of Solution

Introduction: The position vector described the position of an object relative to a fixed reference point.

Explanation:

Given information:

The initial position vector is (5i^+3j^)m and final position vector is (16i^+12j^)m .

The position vector of point A in terms of fraction f is,

A=[(5+11f)i^+(3+9f)j^]m

When the value of f is 1 , then the position vector of point A becomes,

A=16i^+12j^

This position vector is similar to the final position vector of the destination path. So, if the value of f is 1 then the point A move to the final point that really exist.

Conclusion:

Therefore, position vector of point A for f=1 is reasonable because the position of point A is shifted to the final point of the destination path.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Consider the circuit shown in the figure below. (Let R = 12.0 (2.) 25.0 V 10.0 www 10.0 Ω b www 5.00 Ω w R 5.00 Ω i (a) Find the current in the 12.0-0 resistor. 1.95 × This is the total current through the battery. Does all of this go through R? A (b) Find the potential difference between points a and b. 1.72 × How does the potential difference between points a and b relate to the current through resistor R? V
3.90 ... CP A rocket designed to place small payloads into orbit is carried to an altitude of 12.0 km above sea level by a converted airliner. When the airliner is flying in a straight line at a constant speed of 850 km/h, the rocket is dropped. After the drop, the air- liner maintains the same altitude and speed and continues to fly in a straight line. The rocket falls for a brief time, after which its rocket motor turns on. Once its rocket motor is on, the combined effects of thrust and gravity give the rocket a constant acceleration of magnitude 3.00g directed at an angle of 30.0° above the hori- zontal. For reasons of safety, the rocket should be at least 1.00 km in front of the airliner when it climbs through the airliner's alti- tude. Your job is to determine the minimum time that the rocket must fall before its engine starts. You can ignore air resistance. Your answer should include (i) a diagram showing the flight paths of both the rocket and the airliner, labeled at several…
1. In an industrial fabrication process, a fluid, with density p = 800 kg/m and specific heat capacity c = 5000 J/kg-C°, emerges from a tank at a temperature, T, = 400 °C. The fluid then enters a metal pipe with inner radius a = 2.0 cm and outer radius b = 3.0 cm and thermal conductivity k = 180 W/m•C°. Outside the pipe the temperature is fixed at Tout = 15 °C. If the fluid flows at speed v = 8.0 m/s and the length of the pipe is L = 25 m, what is the temperature of the fluid at the end of the pipe? (Answer: 83 °C) please I need to show All work problems step by step

Chapter 3 Solutions

Physics for Scientists and Engineers

Ch. 3 - Vector A has a magnitude of 29 units and points in...Ch. 3 - A force F1 of magnitude 6.00 units acts on an...Ch. 3 - Three displacements are A=200m due south, B=250m...Ch. 3 - The displacement vectors A and B shown in Figure...Ch. 3 - A roller-coaster car moves 200 ft horizontally and...Ch. 3 - A minivan travels straight north in the right lane...Ch. 3 - A person walks 25.0 north of east for 3.10 km. How...Ch. 3 - Your dog is running around the grass in your back...Ch. 3 - Given the vectors A=2.00i+6.00j and B=3.00i2.00j,...Ch. 3 - The helicopter view in Fig. P3.15 shows two people...Ch. 3 - A snow-covered ski slope makes an angle of 35.0...Ch. 3 - Consider the three displacement vectors m, m,...Ch. 3 - Vector A has x and y components of 8.70 cm and...Ch. 3 - Prob. 19PCh. 3 - Given the displacement vectors A=(3i4j+4k)m and...Ch. 3 - Vector A has a negative x component 3.00 units in...Ch. 3 - Three displacement vectors of a croquet ball are...Ch. 3 - Prob. 23PCh. 3 - Prob. 24PCh. 3 - Use the component method to add the vectors A and...Ch. 3 - A girl delivering newspapers covers her route by...Ch. 3 - A man pushing a mop across a floor causes it to...Ch. 3 - Figure P3.28 illustrates typical proportions of...Ch. 3 - Review. As it passes over Grand Bahama Island, the...Ch. 3 - In an assembly operation illustrated in Figure...Ch. 3 - Review. You are standing on the ground at the...Ch. 3 - Why is the following situation impossible? A...Ch. 3 - In Figure P3.33, the line segment represents a...Ch. 3 - You are spending the summer as an assistant...Ch. 3 - A person going for a walk follows the path shown...Ch. 3 - A ferry transports tourists between three islands....Ch. 3 - Two vectors A and B have precisely equal...Ch. 3 - Two vectors A and B have precisely equal...Ch. 3 - Review. The biggest stuffed animal in the world is...Ch. 3 - Ecotourists use their global positioning system...Ch. 3 - A vector is given by R=2i+j+3k. Find (a) the...Ch. 3 - You are working as an assistant to an air-traffic...Ch. 3 - Review. The instantaneous position of an object is...Ch. 3 - Vectors A and B have equal magnitudes of 5.00. The...Ch. 3 - A rectangular parallelepiped has dimensions a, b,...Ch. 3 - A pirate has buried his treasure on an island with...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Kinematics Part 3: Projectile Motion; Author: Professor Dave explains;https://www.youtube.com/watch?v=aY8z2qO44WA;License: Standard YouTube License, CC-BY