The frequency of light and the wavelength (in nanometres) of radiation should be calculated using the relation between speed, wavelength and frequency of a wave. Concept Introduction: A wave is a disturbance or variation that travels through a medium transporting energy without transporting matter. The wavelength is defined as the distance between the two similar points on consecutive waves. The frequency is defined as the number of waves which move through any particular point in one second. Figure.1 The speed, wavelength and frequency of a wave are interrelated by c = λν where λ and ν are mentioned in meters ( m ) and reciprocal seconds ( s − 1 ).
The frequency of light and the wavelength (in nanometres) of radiation should be calculated using the relation between speed, wavelength and frequency of a wave. Concept Introduction: A wave is a disturbance or variation that travels through a medium transporting energy without transporting matter. The wavelength is defined as the distance between the two similar points on consecutive waves. The frequency is defined as the number of waves which move through any particular point in one second. Figure.1 The speed, wavelength and frequency of a wave are interrelated by c = λν where λ and ν are mentioned in meters ( m ) and reciprocal seconds ( s − 1 ).
The frequency of light and the wavelength (in nanometres) of radiation should be calculated using the relation between speed, wavelength and frequency of a wave.
Concept Introduction:
A wave is a disturbance or variation that travels through a medium transporting energy without transporting matter. The wavelength is defined as the distance between the two similar points on consecutive waves. The frequency is defined as the number of waves which move through any particular point in one second.
Figure.1
The speed, wavelength and frequency of a wave are interrelated by c = λν where λ and ν are mentioned in meters (m) and reciprocal seconds (s−1).
(b)
Interpretation Introduction
Interpretation:
The frequency of light and the wavelength (in nanometres) of radiation should be calculated using the relation between speed, wavelength and frequency of a wave.
Concept Introduction:
A wave is a disturbance or variation that travels through a medium transporting energy without transporting matter. The wavelength is defined as the distance between the two similar points on consecutive waves. The frequency is defined as the number of waves which move through any particular point in one second.
Figure.1
The speed, wavelength and frequency of a wave are interrelated by c = λν where λ and ν are mentioned in meters (m) and reciprocal seconds (s−1).
The representation of a one-dimensional velocity distribution function for a gas, as the temperature increases:a) it becomes more flattenedb) the maximum occurs for vi = 0 m/sExplain it.
The velocity distribution function of gas moleculesa) is used to measure their velocity, since the small size of gas molecules means that it cannot be measured in any other wayb) is only used to describe the velocity of particles if their density is very high.c) describes the probability that a gas particle has a velocity in a given interval of velocities
Explain why in the representation of a one-dimensional velocity distribution function for a particular gas, the maximum occurs for vi = 0 m/s.