![CHEMISTRY >CUSTOM<](https://www.bartleby.com/isbn_cover_images/9781309097182/9781309097182_largeCoverImage.gif)
Concept explainers
(a)
Interpretation:
The mass of
Concept introduction:
The molar mass is defined as the mass of one mol of a substance in grams. The molar mass of a compound is calculated by adding the molar mass of each element multiplied by its number of atoms present in the chemical formula.
The mass of a compound in grams can be calculated from the given moles and the molar mass of that compound.
The expression to calculate the mass of a chemical substance in grams is as follows:
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 3.14P
The mass of
Explanation of Solution
The expression to calculate the molar mass of
Substitute
The molar mass of
Calculate the mass of
Therefore, the mass of
(b)
Interpretation:
The moles of oxygen atoms in
Concept introduction:
One mole is defined as the amount of substance that contains the same number of entities such as molecules, ions, atoms as the number of atoms in
The amount of an element can be calculated from the given amount of compound, the moles of that element present in one mole of the compound and the Avogadro’ number. The expression to calculate the moles of atoms of an element in a compound is as follows:
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 3.14P
In
Explanation of Solution
The expression to calculate the molar mass of
Substitute
The molar mass of
Calculate the amount of
Therefore,
One mole of
In
(c)
Interpretation:
The number of oxygen atoms in
Concept introduction:
One mole is defined as the amount of substance that contains the same number of entities such as molecules, ions, atoms as the number of atoms in
The number of an atom of an element can be calculated from the given amount of compound, the moles of that element present in one mole of the compound and the Avogadro’ number.
The expression to calculate the amount of a chemical substance in moles is as follows:
The expression to calculate the amount of atoms of an element in a compound is as follows:
The expression to calculate the number of atoms of an element is as follows:
(c)
![Check Mark](/static/check-mark.png)
Answer to Problem 3.14P
The number of oxygen atoms in
Explanation of Solution
The expression to calculate the molar mass of
Substitute
Therefore, the molar mass of
Calculate the amount of
Therefore,
One mole of
Therefore,
Calculate the number of oxygen atoms in
In
Want to see more full solutions like this?
Chapter 3 Solutions
CHEMISTRY >CUSTOM<
- Don't used hand raiting and don't used Ai solutionarrow_forward* How many milliliters of 97.5(±0.5) wt% H2SO4 with a density of 1.84(±0.01) g/mL will you need to prepare 2.000 L of 0.110 M H2SO4? * If the uncertainty in delivering H2SO4 is ±0.01 mL, calculate the absolute uncertainty in the molarity (0.110 M). Assume there is negligible uncertainty in the formula mass of NaOH and in the final volume (2.000 L) and assume random error.arrow_forwardYou are tasked with creating a calibration curve for the absorbance of cobalt solutions of various concentrations. You must prepare 5 standards with concentrations between 1.00 mg/L and 10.0 mg/L Co2+. You have a stock solution with a concentration of 40 mg/L Co2+ and all the standard lab glassware including transfer pipets and flasks. Explain how you would make your 5 standard solutions of various concentrations, including what glassware you would use to measure and prepare each solution.arrow_forward
- Predict the product and write the mechanism. CH3-CH=CH-CH2-CH3 + NBS- hv CCl4arrow_forwardHow exactly is carbon disulfide used in industry? Specifically, where does it come in during rubber or textile production and what is the chemical processes?arrow_forwardA researcher has developed a new analytical method to determine the percent by mass iron in solids. To test the new method, the researcher purchases a standard reference material sample that is 2.85% iron by mass. Analysis of the iron standard with the new method returns values of 2.75%, 2.89%, 2.77%, 2.81%, and 2.87%. Does the new method produce a result that is significantly different from the standard value at the 95% confidence level?arrow_forward
- Create a drawing of an aceral with at least 2 isopropoxy groups, and a total of 11 carbon atomsarrow_forward4. Predict the major product(s) for each of the following reactions. HBr (1 equiv.) peroxide, A a. b. NBS, peroxide, Aarrow_forwardIn addition to the separation techniques used in this lab (magnetism, evaporation, and filtering), there are other commonly used separation techniques. Some of these techniques are:Distillation – this process is used to separate components that have significantly different boiling points. The solution is heated and the lower boiling point substance is vaporized first. The vapor can be collected and condensed and the component recovered as a pure liquid. If the temperature of the mixture is then raised, the next higher boiling component will come off and be collected. Eventually only non-volatile components will be left in the original solution.Centrifugation – a centrifuge will separate mixtures based on their mass. The mixture is placed in a centrifuge tube which is then spun at a high speed. Heavier components will settle at the bottom of the tube while lighter components will be at the top. This is the technique used to separate red blood cells from blood plasma.Sieving – this is…arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)