Concept explainers
A mixture of methane (CH4) and ethane (C2H6) of mass 13.43 g is completely burned in oxygen. If the total mass of CO2 and H2O produced is 64.84 g, calculate the fraction of CH4 in the mixture.
Interpretation:
The fraction of
Concept introduction:
- Balanced chemical equation of a reaction is written according to law of conservation of mass.
- Equation for Number of moles of a substance, from its given mass is,
- Mole ratio between the reactant and a product of a reaction are depends upon the coefficients of reactant and product in a balanced chemical equation.
Answer to Problem 3.147QP
The fraction of
Explanation of Solution
In given reaction,
Mixture of
Therefore,
The chemical equation for this reaction is,
Balanced chemical equation of a reaction is written according to law of conservation of mass.
Therefore,
The total number of each atoms in the reactant side should equal to the total number of each atoms in the product side.
So, in order to balance a chemical equation, the coefficients of compounds or atoms are needed to be changed in such a way that total number of each atoms in the reactant side and the total number of each atoms in the product side is to become equal.
Hence,
The balanced equations for the given reactions are,
Assumes mass of
The mass of Mixture of
Let’s take mass of
So, the number of moles of
The balanced chemical equation of the reaction is,
The mole ratio between
The mole ratio between
So, the number of moles of
Then,
The mass of
The mass of
The mass of Mixture of
Let’s take mass of
So, the number of moles of
The balanced chemical equation of the reaction is,
The mole ratio between
The mole ratio between
So, the number of moles of
Then,
The mass of
The mass of
The mass of
The mass of
The mass of
The mass of
The total mass of
Therefore,
So, the mass of
Hence,
The fraction of
The fraction of
Want to see more full solutions like this?
Chapter 3 Solutions
Connect for Chemistry
- Don't used hand raitingarrow_forwardA composite material reinforced with aligned fibers, consisting of 20% by volume of silicon carbide (SiC) fibers and 80% by volume of polycarbonate (PC) matrix. The mechanical characteristics of the 2 materials are in the table. The stress of the matrix when the fiber breaks is 45 MPa. Calculate the longitudinal strength? SiC PC Elastic modulus (GPa) Tensile strength (GPa) 400 2,4 3,9 0,065arrow_forwardQuestion 2 What starting materials or reagents are best used to carry out the following reaction? 2Fe, 3Br2 ○ FeCl3 2Fe, 4Br2 O Heat and Br2 Heat and HBr Brarrow_forward
- What is/are the major product(s) of the following reaction? O AICI -Chts +arrow_forwardShown below is the major resonance structure for a molecule. Draw the second best resonance structure of the molecule. Include all non-zero formal charges. H. C H H C H :Ö: Click and drag to start drawing a structure.arrow_forwardShown below is the major resonance structure for a molecule. Draw the second best resonance structure of the molecule. Include all non-zero formal charges. H. C H H C. H H H H Click and drag to start drawing a structure. Xarrow_forward
- Relative Intensity Part VI. consider the multi-step reaction below for compounds A, B, and C. These compounds were subjected to mass spectrometric analysis and the following spectra for A, B, and C was obtained. Draw the structure of B and C and match all three compounds to the correct spectra. Relative Intensity Relative Intensity 100 HS-NJ-0547 80 60 31 20 S1 84 M+ absent 10 30 40 50 60 70 80 90 100 100- MS2016-05353CM 80- 60 40 20 135 137 S2 164 166 0-m 25 50 75 100 125 150 m/z 60 100 MS-NJ-09-43 40 20 20 80 45 S3 25 50 75 100 125 150 175 m/zarrow_forwardDon't used hand raiting and don't used Ai solutionarrow_forwardPredicting the pro Predict the major products of this organic reaction. Explanation Check m ☐ + 5 1.03 Click and drag t drawing a stru 2. (CH₂)₂S 3 2 © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Centerarrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning