Concept explainers
A mixture of methane (CH4) and ethane (C2H6) of mass 13.43 g is completely burned in oxygen. If the total mass of CO2 and H2O produced is 64.84 g, calculate the fraction of CH4 in the mixture.
Interpretation:
The fraction of
Concept introduction:
- Balanced chemical equation of a reaction is written according to law of conservation of mass.
- Equation for Number of moles of a substance, from its given mass is,
- Mole ratio between the reactant and a product of a reaction are depends upon the coefficients of reactant and product in a balanced chemical equation.
Answer to Problem 3.147QP
The fraction of
Explanation of Solution
In given reaction,
Mixture of
Therefore,
The chemical equation for this reaction is,
Balanced chemical equation of a reaction is written according to law of conservation of mass.
Therefore,
The total number of each atoms in the reactant side should equal to the total number of each atoms in the product side.
So, in order to balance a chemical equation, the coefficients of compounds or atoms are needed to be changed in such a way that total number of each atoms in the reactant side and the total number of each atoms in the product side is to become equal.
Hence,
The balanced equations for the given reactions are,
Assumes mass of
The mass of Mixture of
Let’s take mass of
So, the number of moles of
The balanced chemical equation of the reaction is,
The mole ratio between
The mole ratio between
So, the number of moles of
Then,
The mass of
The mass of
The mass of Mixture of
Let’s take mass of
So, the number of moles of
The balanced chemical equation of the reaction is,
The mole ratio between
The mole ratio between
So, the number of moles of
Then,
The mass of
The mass of
The mass of
The mass of
The mass of
The mass of
The total mass of
Therefore,
So, the mass of
Hence,
The fraction of
The fraction of
Want to see more full solutions like this?
Chapter 3 Solutions
Chemistry
- Don't used hand raitingarrow_forwardDon't used Ai solutionarrow_forwardSaved v Question: I've done both of the graphs and generated an equation from excel, I just need help explaining A-B. Below is just the information I used to get the graphs obtain the graph please help. Prepare two graphs, the first with the percent transmission on the vertical axis and concentration on the horizontal axis and the second with absorption on the vertical axis and concentration on the horizontal axis. Solution # Unknown Concentration (mol/L) Transmittance Absorption 9.88x101 635 0.17 1.98x101 47% 0.33 2.95x101 31% 0.51 3.95x10 21% 0.68 4.94x10 14% 24% 0.85 0.62 A.) Give an equation that relates either the % transmission or the absorption to the concentration. Explain how you arrived at your equation. B.) What is the relationship between the percent transmission and the absorption? C.) Determine the concentration of the ironlll) salicylate in the unknown directly from the graph and from the best fit trend-line (least squares analysis) of the graph that yielded a straight…arrow_forward
- Don't used Ai solutionarrow_forwardCalculate the differences between energy levels in J, Einstein's coefficients of estimated absorption and spontaneous emission and life time media for typical electronic transmissions (vnm = 1015 s-1) and vibrations (vnm = 1013 s-1) . Assume that the dipolar transition moments for these transactions are in the order of 1 D.Data: 1D = 3.33564x10-30 C m; epsilon0 = 8.85419x10-12 C2m-1J-1arrow_forwardDon't used Ai solutionarrow_forward
- Please correct answer and don't used hand raitingarrow_forwardIn an induced absorption process:a) the population of the fundamental state is diminishingb) the population of the excited state decreasesc) the non-radiating component is the predominant oned) the emission radiation is consistentarrow_forwardhow a - Cyanostilbenes are made? provide 3 different methods for their synthesisarrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning