Spreadsheet Modeling & Decision Analysis: A Practical Introduction To Business Analytics, Loose-leaf Version
8th Edition
ISBN: 9781337274852
Author: Ragsdale, Cliff
Publisher: South-Western College Pub
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 22QP
a)
Summary Introduction
To formulate: An linear programming model for the problem.
b)
Summary Introduction
To develop: A spreadsheet model and solve using solver.
c)
Summary Introduction
To identify: The optimal solution.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Which of the following are important to investors evaluating direct participation programs?
I. The economic soundness of the program
II. The expertise of the general partner
III. The basic objectives of the program
IV. The start-up costs
A I, II, and IV
B I, II, and III
C I, II, III, and IV
D II, III, and IV
A young computer engineer has $12,000 to invest and three different investment options (funds) to choose from. Type 1 guaranteed investment funds offer an expected rate of return of 7%, Type 2 mixed funds (part is guaranteed capital) have an expected rate of return of 8%, while an investment on the Stock Exchange involves an expected rate of return of 12%, but without guaranteed investment capital. Computer engineer has decided not to invest more than $2,000 on the Stock Exchange in order to minimize the risk. Moreover for tax reasons, she needs to invest at least three times more in guaranteed investment funds than in mixed funds.
Assume that at the end of the year the returns are those expected; she is trying to determine the optimum investment amounts.
(a) Express this problem as a linear programming model with two decision variables.(b) Solve the problem with the graphical solution procedure and define the optimum solution.
The CEO of Coral Gables Corp. was reviewing the returns of the company's sizeable investment portfolio in the last five years during a
period of extreme volatility. He noted the 5 year sequence of investment returns as follows: +30%, -20%, +30%, -20%, +30%. He then
calculated the arithmetic average return, but his CFO noted that since he had ignored the compounding effect he was wrong. By how
much was he wrong? (Hint: Calculate the annual arithmetic average return over the five years less the average geometric
(compounded) return.) (Round intermediate calculation to 2 decimal places, e.g. 52.75.)
O 1.59%
O 3.25%
○ 2.95%
○ 9.39%
Chapter 3 Solutions
Spreadsheet Modeling & Decision Analysis: A Practical Introduction To Business Analytics, Loose-leaf Version
Ch. 3 - Prob. 1QPCh. 3 - Prob. 2QPCh. 3 - Prob. 3QPCh. 3 - Prob. 4QPCh. 3 - Prob. 5QPCh. 3 - Prob. 6QPCh. 3 - Refer to question 19 at the end of Chapter 2....Ch. 3 - Prob. 8QPCh. 3 - Prob. 9QPCh. 3 - Prob. 10QP
Ch. 3 - Prob. 11QPCh. 3 - Prob. 12QPCh. 3 - Prob. 13QPCh. 3 - Prob. 14QPCh. 3 - Prob. 15QPCh. 3 - Prob. 16QPCh. 3 - Prob. 17QPCh. 3 - Tuckered Outfitters plans to market a custom brand...Ch. 3 - Prob. 19QPCh. 3 - Prob. 20QPCh. 3 - Prob. 21QPCh. 3 - Prob. 22QPCh. 3 - Prob. 23QPCh. 3 - Prob. 24QPCh. 3 - Prob. 25QPCh. 3 - Prob. 26QPCh. 3 - A manufacturer of prefabricated homes has decided...Ch. 3 - Prob. 28QPCh. 3 - Prob. 29QPCh. 3 - Prob. 30QPCh. 3 - Prob. 31QPCh. 3 - Prob. 32QPCh. 3 - Prob. 33QPCh. 3 - Prob. 34QPCh. 3 - Prob. 35QPCh. 3 - Prob. 36QPCh. 3 - Prob. 37QPCh. 3 - Prob. 38QPCh. 3 - Prob. 39QPCh. 3 - Prob. 40QPCh. 3 - Prob. 41QPCh. 3 - Prob. 42QPCh. 3 - Prob. 43QPCh. 3 - Prob. 44QPCh. 3 - A natural gas trading company wants to develop an...Ch. 3 - Prob. 46QPCh. 3 - The CFO for Eagle Beach Wear and Gift Shop is in...Ch. 3 - Prob. 48QPCh. 3 - Prob. 1.1CCh. 3 - Prob. 1.2CCh. 3 - Prob. 1.3CCh. 3 - Prob. 1.4CCh. 3 - Prob. 2.1CCh. 3 - Prob. 2.2CCh. 3 - Prob. 2.3CCh. 3 - Prob. 2.4CCh. 3 - Prob. 2.5CCh. 3 - Kelly Jones is a financial analyst for Wolverine...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, management and related others by exploring similar questions and additional content below.Similar questions
- It is January 1 of year 0, and Merck is trying to determine whether to continue development of a new drug. The following information is relevant. You can assume that all cash flows occur at the ends of the respective years. Clinical trials (the trials where the drug is tested on humans) are equally likely to be completed in year 1 or 2. There is an 80% chance that clinical trials will succeed. If these trials fail, the FDA will not allow the drug to be marketed. The cost of clinical trials is assumed to follow a triangular distribution with best case 100 million, most likely case 150 million, and worst case 250 million. Clinical trial costs are incurred at the end of the year clinical trials are completed. If clinical trials succeed, the drug will be sold for five years, earning a profit of 6 per unit sold. If clinical trials succeed, a plant will be built during the same year trials are completed. The cost of the plant is assumed to follow a triangular distribution with best case 1 billion, most likely case 1.5 billion, and worst case 2.5 billion. The plant cost will be depreciated on a straight-line basis during the five years of sales. Sales begin the year after successful clinical trials. Of course, if the clinical trials fail, there are no sales. During the first year of sales, Merck believe sales will be between 100 million and 200 million units. Sales of 140 million units are assumed to be three times as likely as sales of 120 million units, and sales of 160 million units are assumed to be twice as likely as sales of 120 million units. Merck assumes that for years 2 to 5 that the drug is on the market, the growth rate will be the same each year. The annual growth in sales will be between 5% and 15%. There is a 25% chance that the annual growth will be 7% or less, a 50% chance that it will be 9% or less, and a 75% chance that it will be 12% or less. Cash flows are discounted 15% per year, and the tax rate is 40%. Use simulation to model Mercks situation. Based on the simulation output, would you recommend that Merck continue developing? Explain your reasoning. What are the three key drivers of the projects NPV? (Hint: The way the uncertainty about the first year sales is stated suggests using the General distribution, implemented with the RISKGENERAL function. Similarly, the way the uncertainty about the annual growth rate is stated suggests using the Cumul distribution, implemented with the RISKCUMUL function. Look these functions up in @RISKs online help.)arrow_forwardA martingale betting strategy works as follows. You begin with a certain amount of money and repeatedly play a game in which you have a 40% chance of winning any bet. In the first game, you bet 1. From then on, every time you win a bet, you bet 1 the next time. Each time you lose, you double your previous bet. Currently you have 63. Assuming you have unlimited credit, so that you can bet more money than you have, use simulation to estimate the profit or loss you will have after playing the game 50 times.arrow_forwardYou now have 10,000, all of which is invested in a sports team. Each year there is a 60% chance that the value of the team will increase by 60% and a 40% chance that the value of the team will decrease by 60%. Estimate the mean and median value of your investment after 50 years. Explain the large difference between the estimated mean and median.arrow_forward
- A project does not necessarily have a unique IRR. (Refer to the previous problem for more information on IRR.) Show that a project with the following cash flows has two IRRs: year 1, 20; year 2, 82; year 3, 60; year 4, 2. (Note: It can be shown that if the cash flow of a project changes sign only once, the project is guaranteed to have a unique IRR.)arrow_forwardYou are considering a 10-year investment project. At present, the expected cash flow each year is 10,000. Suppose, however, that each years cash flow is normally distributed with mean equal to last years actual cash flow and standard deviation 1000. For example, suppose that the actual cash flow in year 1 is 12,000. Then year 2 cash flow is normal with mean 12,000 and standard deviation 1000. Also, at the end of year 1, your best guess is that each later years expected cash flow will be 12,000. a. Estimate the mean and standard deviation of the NPV of this project. Assume that cash flows are discounted at a rate of 10% per year. b. Now assume that the project has an abandonment option. At the end of each year you can abandon the project for the value given in the file P11_60.xlsx. For example, suppose that year 1 cash flow is 4000. Then at the end of year 1, you expect cash flow for each remaining year to be 4000. This has an NPV of less than 62,000, so you should abandon the project and collect 62,000 at the end of year 1. Estimate the mean and standard deviation of the project with the abandonment option. How much would you pay for the abandonment option? (Hint: You can abandon a project at most once. So in year 5, for example, you abandon only if the sum of future expected NPVs is less than the year 5 abandonment value and the project has not yet been abandoned. Also, once you abandon the project, the actual cash flows for future years are zero. So in this case the future cash flows after abandonment should be zero in your model.)arrow_forwardIn the financial world, there are many types of complex instruments called derivatives that derive their value from the value of an underlying asset. Consider the following simple derivative. A stocks current price is 80 per share. You purchase a derivative whose value to you becomes known a month from now. Specifically, let P be the price of the stock in a month. If P is between 75 and 85, the derivative is worth nothing to you. If P is less than 75, the derivative results in a loss of 100(75-P) dollars to you. (The factor of 100 is because many derivatives involve 100 shares.) If P is greater than 85, the derivative results in a gain of 100(P-85) dollars to you. Assume that the distribution of the change in the stock price from now to a month from now is normally distributed with mean 1 and standard deviation 8. Let EMV be the expected gain/loss from this derivative. It is a weighted average of all the possible losses and gains, weighted by their likelihoods. (Of course, any loss should be expressed as a negative number. For example, a loss of 1500 should be expressed as -1500.) Unfortunately, this is a difficult probability calculation, but EMV can be estimated by an @RISK simulation. Perform this simulation with at least 1000 iterations. What is your best estimate of EMV?arrow_forward
- Assume the demand for a companys drug Wozac during the current year is 50,000, and assume demand will grow at 5% a year. If the company builds a plant that can produce x units of Wozac per year, it will cost 16x. Each unit of Wozac is sold for 3. Each unit of Wozac produced incurs a variable production cost of 0.20. It costs 0.40 per year to operate a unit of capacity. Determine how large a Wozac plant the company should build to maximize its expected profit over the next 10 years.arrow_forwardSoftware development is an inherently risky and uncertain process. For example, there are many examples of software that couldnt be finished by the scheduled release datebugs still remained and features werent ready. (Many people believe this was the case with Office 2007.) How might you simulate the development of a software product? What random inputs would be required? Which outputs would be of interest? Which measures of the probability distributions of these outputs would be most important?arrow_forwardThe IRR is the discount rate r that makes a project have an NPV of 0. You can find IRR in Excel with the built-in IRR function, using the syntax =IRR(range of cash flows). However, it can be tricky. In fact, if the IRR is not near 10%, this function might not find an answer, and you would get an error message. Then you must try the syntax =IRR(range of cash flows, guess), where guess" is your best guess for the IRR. It is best to try a range of guesses (say, 90% to 100%). Find the IRR of the project described in Problem 34. 34. Consider a project with the following cash flows: year 1, 400; year 2, 200; year 3, 600; year 4, 900; year 5, 1000; year 6, 250; year 7, 230. Assume a discount rate of 15% per year. a. Find the projects NPV if cash flows occur at the ends of the respective years. b. Find the projects NPV if cash flows occur at the beginnings of the respective years. c. Find the projects NPV if cash flows occur at the middles of the respective years.arrow_forward
- Based on Kelly (1956). You currently have 100. Each week you can invest any amount of money you currently have in a risky investment. With probability 0.4, the amount you invest is tripled (e.g., if you invest 100, you increase your asset position by 300), and, with probability 0.6, the amount you invest is lost. Consider the following investment strategies: Each week, invest 10% of your money. Each week, invest 30% of your money. Each week, invest 50% of your money. Use @RISK to simulate 100 weeks of each strategy 1000 times. Which strategy appears to be best in terms of the maximum growth rate? (In general, if you can multiply your investment by M with probability p and lose your investment with probability q = 1 p, you should invest a fraction [p(M 1) q]/(M 1) of your money each week. This strategy maximizes the expected growth rate of your fortune and is known as the Kelly criterion.) (Hint: If an initial wealth of I dollars grows to F dollars in 100 weeks, the weekly growth rate, labeled r, satisfies F = (I + r)100, so that r = (F/I)1/100 1.)arrow_forwardA common decision is whether a company should buy equipment and produce a product in house or outsource production to another company. If sales volume is high enough, then by producing in house, the savings on unit costs will cover the fixed cost of the equipment. Suppose a company must make such a decision for a four-year time horizon, given the following data. Use simulation to estimate the probability that producing in house is better than outsourcing. If the company outsources production, it will have to purchase the product from the manufacturer for 25 per unit. This unit cost will remain constant for the next four years. The company will sell the product for 42 per unit. This price will remain constant for the next four years. If the company produces the product in house, it must buy a 500,000 machine that is depreciated on a straight-line basis over four years, and its cost of production will be 9 per unit. This unit cost will remain constant for the next four years. The demand in year 1 has a worst case of 10,000 units, a most likely case of 14,000 units, and a best case of 16,000 units. The average annual growth in demand for years 2-4 has a worst case of 7%, a most likely case of 15%, and a best case of 20%. Whatever this annual growth is, it will be the same in each of the years. The tax rate is 35%. Cash flows are discounted at 8% per year.arrow_forwardIt costs a pharmaceutical company 75,000 to produce a 1000-pound batch of a drug. The average yield from a batch is unknown but the best case is 90% yield (that is, 900 pounds of good drug will be produced), the most likely case is 85% yield, and the worst case is 70% yield. The annual demand for the drug is unknown, with the best case being 20,000 pounds, the most likely case 17,500 pounds, and the worst case 10,000 pounds. The drug sells for 125 per pound and leftover amounts of the drug can be sold for 30 per pound. To maximize annual expected profit, how many batches of the drug should the company produce? You can assume that it will produce the batches only once, before demand for the drug is known.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Practical Management ScienceOperations ManagementISBN:9781337406659Author:WINSTON, Wayne L.Publisher:Cengage,
Practical Management Science
Operations Management
ISBN:9781337406659
Author:WINSTON, Wayne L.
Publisher:Cengage,