Electric Motor Control
10th Edition
ISBN: 9781133702818
Author: Herman
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 1SQ
To determine
Explain about a magnetic line voltage motor starter.
Expert Solution & Answer
Explanation of Solution
Discussion:
Magnetic line voltage motor starters are electromechanical devices that provide a safe, convenient, and economical means of full voltage starting and stopping motors. Magnetic line voltage starters use electromechanical energy to close the switches.
Magnetic line voltage motor starters use along with overload relays and protect the motor from over loads (over currents due to high voltage).
Magnetic line voltage motor starters can be controlled remotely with push buttons, float switches, timing relays, and other pilot devices.
Conclusion:
Thus, the magnetic line voltage motor starter is explained.
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Need handwritten solution not using chatgpt
Handwritten Solution please
The E-field pattern of an antenna. independent of , varies as follows:
E
0
0° ≤ 0≤ 45°
45°<≤
90°
90° <8180°
(a) What is the directivity of this antenna?
Umax
7
why did we use this law
Umax = 12 but we divided by 2?
In the sent Solution
=
R
27
Chapter 3 Solutions
Electric Motor Control
Ch. 3 - Prob. 1SQCh. 3 - How many poles are required on motor starters for...Ch. 3 - If a motor starter is installed according to...Ch. 3 - Using the time limit overload or the dashpot...Ch. 3 - What causes the AC hum or chatter in AC...Ch. 3 - What is the phase relationship between the flux in...Ch. 3 - In what AC and DC devices is the principle of the...Ch. 3 - What does the electrician look for to remedy the...Ch. 3 - What type of protective enclosure is most commonly...Ch. 3 - What advantage is there in using combination...
Ch. 3 - What safety feature does the combination starter...Ch. 3 - Prob. 12SQCh. 3 - How is the size of the overload heaters selected...Ch. 3 - What type of motor starter enclosure (include NEMA...Ch. 3 - Prob. 15SQCh. 3 - Prob. 16SQCh. 3 - Prob. 17SQCh. 3 - Prob. 18SQCh. 3 - Select the best answer for each of the following....Ch. 3 - Prob. 20SQCh. 3 - Prob. 21SQCh. 3 - Select the best answer for each of the following....Ch. 3 - Prob. 23SQCh. 3 - Select the best answer for each of the following....Ch. 3 - Select the best answer for each of the following....Ch. 3 - Select the best answer for each of the following....Ch. 3 - Select the best answer for each of the following....Ch. 3 - Prob. 28SQCh. 3 - Select the best answer for each of the following....Ch. 3 - Prob. 30SQCh. 3 - Prob. 31SQCh. 3 - What is the difference between a grounded control...Ch. 3 - A control transformer has a primary voltage of 480...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The normalized far-zone field pattern of an antenna is given by (sin cos²) E = 0 00 and 0 ≤ ≤ π/2. 3/22 π elsewhere Find the directivity using (a) the exact expression In the sent soalation Use Prad=2+1 7/2 Pre= 2 + 1 Sco³odo + 5 siño de Where did the 2 Com from?arrow_forwardPen and paper solution please with explaination not using chatgptarrow_forwardhowarrow_forward
- A four pole generator having wave wound armature winding has 51 slots ,each slot containing 20 conductors,what will be the voltage generated in the machine when driven at 1500rpm assuming the flux per pole is 7mWb Don't use Artificial intelligencearrow_forwardNeed Handwritten solution Do not use chatgpt Or AIarrow_forwardI need a detailed solution to a problem. The far-zone electric field intensity (array factor) of an end-fire two-element array antenna, placed along the z-axis and radiating into free-space, is given by E=cos (cos - 1) Find the directivity using (a) Kraus' approximate formula (b) the DIRECTIVITY computer program at the end of this chapter Repeat Problem 2.19 when E = cos -jkr 0505π $[ (cos + 1) (a). Elmax = Cost (case-1)] | max" = 1 at 8-0°. 0.707 Emax = 0.707.(1) = cos [(cose,-1)] (cose-1) = ± 0,= {Cos' (2) = does not exist (105(0)= 90° = rad. Bir Do≈ 4T ar=2() = = Bar 4-1-273 = 1.049 dB T₂ a. Elmax = cos((cose +1)), 0.707 = cos (Close,+1)) = 1 at 6 = π Imax (Cose+1)=== G₁ = cos(-2) does not exist. Girar=2()=π. 4T \cos (0) + 90° + rad Do≈ = +=1.273=1.049dB IT 2arrow_forward
- I need an expert mathematical solution. The E-field pattern of an antenna. independent of , varies as follows: 0° ≤ 0≤ 45° E = 0 45° {1 90° 90° < 0 ≤ 180° (a) What is the directivity of this antenna? (b) What is the radiation resistance of the antenna at 200 m from it if the field is equal to 10 V/m (rms) for Ø = 0° at that distance and the terminal current is 5 A (rms)?arrow_forwardI need an expert mathematical solution. The normalized far-zone field pattern of an antenna is given by E = {® (sin cos)/ 0 Find the directivity using 0 ≤ 0 ≤ π and 0≤ 0≤ π/2. 3m2sds2, elsewherearrow_forwardI need an expert mathematical solution. The radiation intensity of an aperture antenna, mounted on an infinite ground plane with perpendicular to the aperture. is rotationally symmetric (not a function of 4), and it is given by sin (7 sin 0) U π sin Find the approximate directivity (dimensionless and in dB) usingarrow_forward
- Waveforms v1(t) and v2(t) are given by:v1(t) = −4 sin(6π ×10^4t +30◦) V,v2(t) = 2cos(6π ×10^4t −30◦) V.Does v2(t) lead or lag v1(t), and by what phase angle?arrow_forward7.1 Express the current waveform i(t) = -0.2 cos(6 × 10°1 +60°) mA in standard cosine form and then determine the following: (a) Its amplitude, frequency, and phase angle. (b) i(t) at t=0.1 ns.arrow_forward3. Consider the RC circuit with a constant voltage source shown in the diagram below. The values of the resistor, capacitor, and input voltage are R = 50, C = 10 µF, and V = 6V, respectively. Assume that there is initially no charge on the capacitor before the switch is closed. Vo ↑i(t) R w C When the switch closes at time t = 0, the current begins to flow as a function of time according to the equation i(t) = ioencarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Electricity for Refrigeration, Heating, and Air C...Mechanical EngineeringISBN:9781337399128Author:Russell E. SmithPublisher:Cengage LearningDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage Learning
Electricity for Refrigeration, Heating, and Air C...
Mechanical Engineering
ISBN:9781337399128
Author:Russell E. Smith
Publisher:Cengage Learning
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning