Concept explainers
(a)
Interpretation: The reagents used in the determination of the amino acid sequence of a small peptide should be determined.
Concept Introduction: A peptide bond is present between the two amino acids in a protein. During the formation of a peptide bond, a molecule of water is released. The amino group of an amino acid gets associated with the carboxyl group of another. Polypeptides and proteins are the chains formed by the amino acids.
(a)

Answer to Problem 1P
The reagent used in the determination of the amino acid sequence of a small peptide is phenyl isothiocyanate.
Explanation of Solution
The reagent used in the determination of the amino acid sequence of a small peptide is phenyl isothiocyanate.
Phenyl isothiocyanate shows a reaction with an uncharged N-terminal amino group. It occurs under the slightly alkaline conditions and forms a cyclical phenyl thiocarbamoyl derivative. It can sequence up to 30 amino acids accurately with modern machines. It is proficient of over 99% proficiency per amino acid.
(b)
Interpretation: The reagent that can undergo reversible denaturation if a protein lacks disulfide bonds should be determined. Also, the reagent needed when the disulfide bonds are present should be determined.
Concept Introduction: A peptide bond is present between the two amino acids in a protein. During the formation of a peptide bond, a molecule of water is released. The amino group of an amino acid gets associated with the carboxyl group of another. Polypeptides and proteins are the chains formed by the amino acids.
(b)

Answer to Problem 1P
The reagent for the reversible denaturation is urea. Beta-mercaptoethanol is used to reduce the disulfide bonds.
Explanation of Solution
The reagent that can undergo reversible denaturation if a protein lacks disulfide bonds is urea.
If the disulfide bonds are present, then the reagent needed is beta-mercaptoethanol. This reagent is used to reduce the disulfide bonds.
(c)
Interpretation: The reagent useful for the peptide bonds hydrolysis present on the carboxyl side of
Concept Introduction: A peptide bond is present between the two amino acids in a protein. During the formation of a peptide bond, a molecule of water is released. The amino group of an amino acid gets associated with the carboxyl group of another. Polypeptides and proteins are the chains formed by the amino acids.
(c)

Answer to Problem 1P
The reagent required is chymotrypsin.
Explanation of Solution
The reagent useful for the peptide bonds hydrolysis present on the carboxyl side of aromatic residues is chymotrypsin which specifically cleaves the C-terminal side of aromatic acid residues.
(d)
Interpretation: The reagent useful for the peptide bonds cleavage on the carboxyl side of methionine should be determined.
Concept Introduction: A peptide bond is present between the two amino acids in a protein. During the formation of a peptide bond, a molecule of water is released. The amino group of an amino acid gets associated with the carboxyl group of another. Polypeptides and proteins are the chains formed by the amino acids.
(d)

Answer to Problem 1P
The reagent useful for thepeptide bonds cleavage on the carboxyl side of methionine is CNBr or cyanogen bromide.
Explanation of Solution
The reagent useful for the peptide bonds cleavage on the carboxyl side of methionine is CNBr. It is also known as cyanogen bromide. It is a solid and colorless inorganic compound. It is extensively used to change the biopolymers, fragment proteins and peptides. It generally cleaves the C-terminus of methionine and produces other compounds.
(e)
Interpretation: The reagent for hydrolysis of peptide bonds on the carboxyl side of lysine and arginine residues should be determined.
Concept Introduction: A peptide bond is present between the two amino acids in a protein. During the formation of a peptide bond, a molecule of water is released. The amino group of an amino acid gets associated with the carboxyl group of another. Polypeptides and proteins are the chains formed by the amino acids.
(e)

Answer to Problem 1P
The reagent for hydrolysis of peptide bonds on the carboxyl side of lysine and arginine residues is trypsin.
Explanation of Solution
The reagent for hydrolysis of peptide bonds on the carboxyl side of lysine and arginine residues is trypsin.
Trypsin is generally formed in the small intestine. It is formed by the activation of trypsinogen. Trypsin usually cuts the peptide chains primarily at the carboxyl side of the lysine or arginineamino acids. It is used for many
Want to see more full solutions like this?
Chapter 3 Solutions
BIOCHEMISTRY (LOOSELEAF)-W/ACCESS
- 2. Which one is the major organic product obtained from the following reaction sequence? HO A OH 1. NaOEt, EtOH 1. LiAlH4 EtO OEt 2. H3O+ 2. H3O+ OH B OH OH C -OH HO -OH OH D E .CO₂Etarrow_forwardwhat is a protein that contains a b-sheet and how does the secondary structure contributes to the overall function of the protein.arrow_forwarddraw and annotate a b-sheet and lable the hydrogen bonding. what is an example that contains the b-sheet and how the secondary structure contributes to the overall function of your example protein.arrow_forward
- Four distinct classes of interactions (inter and intramolecular forces) contribute to a protein's tertiary and quaternary structures. Name the interaction then describe the amino acids that can form this type of interaction. Draw and annotate a diagram of the interaction between two amino acids.arrow_forwardExamine the metabolic pathway. The enzymes that catalyze each step are identified as "e" with a numeric subscript. e₁ e3 e4 A B с 1° B' 02 e5 e6 e7 E F Which enzymes catalyze irreversible reactions? ப e ez ☐ ez e4 ☐ ப es 26 5 e7 Which of the enzymes is likely to be the allosteric enzyme that controls the synthesis of G? €2 ез e4 es 26 5 e7arrow_forwardAn allosteric enzyme that follows the concerted model has an allosteric coefficient (T/R) of 300 in the absence of substrate. Suppose that a mutation reversed the ratio. Select the effects this mutation will have on the relationship between the rate of the reaction (V) and substrate concentration, [S]. ㅁㅁㅁ The enzyme would likely follow Michaelis-Menten kinetics. The plot of V versus [S] would be sigmoidal. The enzyme would mostly be in the T form. The plot of V versus [S] would be hyperbolic. The enzyme would be more active.arrow_forward
- Penicillin is hydrolyzed and thereby rendered inactive by penicillinase (also known as ẞ-lactamase), an enzyme present in some penicillin-resistant bacteria. The mass of this enzyme in Staphylococcus aureus is 29.6 kDa. The amount of penicillin hydrolyzed in 1 minute in a 10.0 mL. solution containing 1.00 x 10 g of purified penicillinase was measured as a function of the concentration of penicillin. Assume that the concentration of penicillin does not change appreciably during the assay. Plots of V versus [S] and 1/V versus 1/[S] for these data are shown. Vo (* 10 M minute"¹) 7.0 6.0 5.0 4.0 3.0 20 1.0 0.0 о 10 20 30 1/Vo (* 10 M1 minute) 20 103 90 BO 70 50 [S] (* 100 M) 40 50 60 y=762x+1.46 × 10" [Penicillin] (M) Amount hydrolyzed (uM) 1 0.11 3 0.25 5 0.34 10 0.45 30 0.58 50 0.61arrow_forwardConsider the four graphs shown. In each graph, the solid blue curve represents the unmodified allosteric enzyme and the dashed green curve represents the enzyme in the presence of the effector. Identify which graphs correctly illustrate the effect of a negative modifier (allosteric inhibitor) and a positive modifier (allosteric activator) on the velocity curve of an allosteric enzyme. Place the correct graph in the set of axes for each type of modifier. Negative modifier Reaction velocity - Positive modifier Substrate concentration - Reaction velocity →→→→ Substrate concentration Answer Bankarrow_forwardConsider the reaction: phosphoglucoisomerase Glucose 6-phosphate: glucose 1-phosphate After reactant and product were mixed and allowed to reach at 25 °C, the concentration of each compound at equilibrium was measured: [Glucose 1-phosphate] = 0.01 M [Glucose 6-phosphate] = 0.19 M Calculate Keq and AG°'. Код .0526 Incorrect Answer 7.30 AG°' kJ mol-1 Incorrect Answerarrow_forward
- Classify each phrase as describing kinases, phosphatases, neither, or both. Kinases Phosphatases Neither Both Answer Bank transfer phosphoryl groups to acidic amino acids in eukaryotes may use ATP as a phosphoryl group donor remove phosphoryl groups from proteins catalyze reactions that are the reverse of dephosphorylation reactions regulate the activity of other proteins catalyze phosphorylation reactions PKA as an example turn off signaling pathways triggered by kinasesarrow_forwardConsider the reaction. kp S P kg What effects are produced by an enzyme on the general reaction? AG for the reaction increases. The rate constant for the reverse reaction (kr) increases. The reaction equilibrium is shifted toward the products. The concentration of the reactants is increased. The activation energy for the reaction is lowered. The formation of the transition state is promoted.arrow_forwardThe graph displays the activities of wild-type and several mutated forms of subtilisin on a logarithmic scale. The mutations are identified as: • The first letter is the one-letter abbreviation for the amino acid being altered. • The number identifies the position of the residue in the primary structure. ⚫ The second letter is the one-letter abbreviation for the amino acid replacing the original one. • Uncat. refers to the estimated rate for the uncatalyzed reaction. Log₁(S-1) Wild type S221A H64A -5 D32A S221A H64A D32A -10 Uncat. How would the activity of a reaction catalyzed by a version of subtilisin with all three residues in the catalytic triad mutated compare to the activity of the uncatalyzed reaction? It would have more activity, because the reaction catalyzed by the triple mutant is approximately three-fold faster than the uncatalyzed reaction. It would have less activity, because the reaction catalyzed by the triple mutant is approximately 1000-fold slower than the…arrow_forward
- BiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage LearningBiology 2eBiologyISBN:9781947172517Author:Matthew Douglas, Jung Choi, Mary Ann ClarkPublisher:OpenStaxBiochemistryBiochemistryISBN:9781305961135Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougalPublisher:Cengage Learning
- Biology (MindTap Course List)BiologyISBN:9781337392938Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. BergPublisher:Cengage LearningHuman Heredity: Principles and Issues (MindTap Co...BiologyISBN:9781305251052Author:Michael CummingsPublisher:Cengage LearningBiology: The Unity and Diversity of Life (MindTap...BiologyISBN:9781337408332Author:Cecie Starr, Ralph Taggart, Christine Evers, Lisa StarrPublisher:Cengage Learning





