Physical Science
11th Edition
ISBN: 9780077862626
Author: Bill Tillery, Stephanie J. Slater, Timothy F. Slater
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 3, Problem 1FFA
l. Evaluate the requirement that something must move whenever work is done. Why is this a requirement?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Lab-Based Section
Use the following information to answer the lab based scenario.
A student performed an experiment in an attempt to determine the index of refraction of glass.
The student used a laser and a protractor to measure a variety of angles of incidence and
refraction through a semi-circular glass prism. The design of the experiment and the student's
results are shown below.
Angle of
Incidence (°)
Angle of
Refraction (º)
20
11
30
19
40
26
50
31
60
36
70
38
2a) By hand (i.e., without using computer software), create a linear graph on graph paper
using the student's data. Note: You will have to manipulate the data in order to achieve a
linear function.
2b) Graphically determine the index of refraction of the semi-circular glass prism, rounding your
answer to the nearest hundredth.
Use the following information to answer the next two questions.
A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in
the diagram.
3a) Determine the critical angle of zircon.
35.0°
70°
55
55°
3b) Determine the angle of refraction when the laser beam leaves the prism.
Use the following information to answer the next two questions.
A laser is directed at a prism made of zircon (n = 1.92) at an incident angle of 35.0°, as shown in
the diagram.
3a) Determine the critical angle of zircon.
35.0°
70°
55
55°
3b) Determine the angle of refraction when the laser beam leaves the prism.
Chapter 3 Solutions
Physical Science
Ch. 3 - According to the definition of mechanical work,...Ch. 3 -
2. The metric unit of a joule (J) is a unit of...Ch. 3 -
3. A N m/s is a unit of...Ch. 3 - Prob. 4ACCh. 3 - Prob. 5ACCh. 3 -
6. A power rating of 1 joule per s is known as a...Ch. 3 -
7. According to PE = mgh, gravitational potential...Ch. 3 -
8. Two cars have the same mass, but one is moving...Ch. 3 - Prob. 9ACCh. 3 -
10. Potential energy and kinetic energy are...
Ch. 3 -
11. Many forms of energy in use today can be...Ch. 3 -
12. In all of our energy uses, we find that...Ch. 3 - Prob. 13ACCh. 3 - Prob. 14ACCh. 3 - Prob. 15ACCh. 3 -
16. The amount of energy generated by...Ch. 3 - Prob. 17ACCh. 3 - Prob. 18ACCh. 3 -
19. A renewable energy source is...Ch. 3 - Prob. 20ACCh. 3 - Prob. 21ACCh. 3 -
22. Which quantity has the greatest influence on...Ch. 3 - Prob. 23ACCh. 3 -
24. Most all energy comes to and leaves Earth in...Ch. 3 -
25. A spring-loaded paper clamp exerts a force of...Ch. 3 -
26. The force exerted when doing work by lifting...Ch. 3 -
27. The work accomplished by lifting an object...Ch. 3 -
28. An iron cannonball and a bowling ball are...Ch. 3 -
29. Two students are poised to dive off...Ch. 3 -
30. A car is moving straight down a highway. What...Ch. 3 - 31. Two identical cars are moving straight down a...Ch. 3 - Prob. 32ACCh. 3 - Prob. 33ACCh. 3 -
34. Today, the basic problem with using solar...Ch. 3 - Prob. 35ACCh. 3 -
36. Petroleum is believed to have formed over...Ch. 3 -
1. How is work related to energy?
Ch. 3 -
2. What is the relationship between the work done...Ch. 3 - Does a person standing motionless in the aisle of...Ch. 3 - Prob. 4QFTCh. 3 -
5. Is a kWh a unit of work, energy, power, or...Ch. 3 -
6. If energy cannot be destroyed, why do some...Ch. 3 -
7. A spring damp exerts a force on a stack of...Ch. 3 -
8. Why are petroleum, natural gas, and coal...Ch. 3 -
9. From time to time, people claim to have...Ch. 3 -
10. Define a joule. What is the difference...Ch. 3 -
11. Compare the energy needed to raise a mass 10...Ch. 3 -
12. What happens to the kinetic energy of a...Ch. 3 -
l. Evaluate the requirement that something must...Ch. 3 -
2. What are the significant similarities and...Ch. 3 -
3. Whenever you do work on something, you give it...Ch. 3 -
4. Simple machines are useful because they are...Ch. 3 -
5. Use the equation for kinetic energy to prove...Ch. 3 -
6. Describe at least several examples of negative...Ch. 3 -
7. The forms of energy are the result of...Ch. 3 -
8. Most technological devices convert one of the...Ch. 3 -
9. Are there any contradictions to the law of...Ch. 3 -
1. How much work is done when a force of 800.0 N...Ch. 3 -
2. A force of 400.0 N is exerted on a 1,250 N car...Ch. 3 -
3. A 5.0 kg textbook is raised a distance of 30.0...Ch. 3 -
4. An electric hoist does 196,000 J of work in...Ch. 3 -
5. What is the horsepower of a 1,500.0 kg car...Ch. 3 -
6. (a) How many horsepower is a 250 W lightbulb?...Ch. 3 -
7. What is the kinetic energy of a 30–gram bullet...Ch. 3 -
8. How much work will be done by a 30–gram bullet...Ch. 3 -
9. A force of 50.0 lb is used to push a box 10.0...Ch. 3 -
10. (a) How much work is done in raising a 50.0...Ch. 3 -
11. What is the kinetic energy in J of a 60.0 g...Ch. 3 -
12. (a) What is the kinetic energy of a 1,500.0...Ch. 3 -
13. The driver of an 800.0 kg car decides to...Ch. 3 -
14. Compare the kinetic energy of an 800.0 kg car...Ch. 3 -
15. A 175.0 lb hiker is able to ascend a 1,980.0...Ch. 3 -
16. (a) How many seconds will it take a 10.0 hp...Ch. 3 -
17. A ball is dropped from 20.0 ft above the...Ch. 3 -
18. What is the velocity of a 60.0 kg jogger with...Ch. 3 -
19. A small sports car and a pickup truck start...Ch. 3 -
20. A 70.0 kg student runs up the stairs of a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- No chatgpt pls will upvotearrow_forwardA beam of alpha-particles of energy 7.3MeV is used.The protons emitted at an angle of zero degree are found to have energy of 9.34MeV.Find the Q-value of this reaction .arrow_forwardAn aluminum rod and a copper rod have the same length of 100cm at 5C. At what temperatures would one of the rods be 0.5 mm longer than the other? Which rod is longer at such temperature?arrow_forward
- ROTATIONAL DYNAMICS Question 01 A solid circular cylinder and a solid spherical ball of the same mass and radius are rolling together down the same inclined. Calculate the ratio of their kinetic energy. Assume pure rolling motion Question 02 A sphere and cylinder of the same mass and radius start from ret at the same point and more down the same plane inclined at 30° to the horizontal Which body gets the bottom first and what is its acceleration b) What angle of inclination of the plane is needed to give the slower body the same acceleration Question 03 i) Define the angular velocity of a rotating body and give its SI unit A car wheel has its angular velocity changing from 2rads to 30 rads seconds. If the radius of the wheel is 400mm. calculate ii) The angular acceleration iii) The tangential linear acceleration of a point on the rim of the wheel Question 04 in 20arrow_forwardQuestion B3 Consider the following FLRW spacetime: t2 ds² = -dt² + (dx² + dy²+ dz²), t2 where t is a constant. a) State whether this universe is spatially open, closed or flat. [2 marks] b) Determine the Hubble factor H(t), and represent it in a (roughly drawn) plot as a function of time t, starting at t = 0. [3 marks] c) Taking galaxy A to be located at (x, y, z) = (0,0,0), determine the proper distance to galaxy B located at (x, y, z) = (L, 0, 0). Determine the recessional velocity of galaxy B with respect to galaxy A. d) The Friedmann equations are 2 k 8πG а 4πG + a² (p+3p). 3 a 3 [5 marks] Use these equations to determine the energy density p(t) and the pressure p(t) for the FLRW spacetime specified at the top of the page. [5 marks] e) Given the result of question B3.d, state whether the FLRW universe in question is (i) radiation-dominated, (ii) matter-dominated, (iii) cosmological-constant-dominated, or (iv) none of the previous. Justify your answer. f) [5 marks] A conformally…arrow_forwardSECTION B Answer ONLY TWO questions in Section B [Expect to use one single-sided A4 page for each Section-B sub question.] Question B1 Consider the line element where w is a constant. ds²=-dt²+e2wt dx², a) Determine the components of the metric and of the inverse metric. [2 marks] b) Determine the Christoffel symbols. [See the Appendix of this document.] [10 marks] c) Write down the geodesic equations. [5 marks] d) Show that e2wt it is a constant of geodesic motion. [4 marks] e) Solve the geodesic equations for null geodesics. [4 marks]arrow_forward
- Page 2 SECTION A Answer ALL questions in Section A [Expect to use one single-sided A4 page for each Section-A sub question.] Question A1 SPA6308 (2024) Consider Minkowski spacetime in Cartesian coordinates th = (t, x, y, z), such that ds² = dt² + dx² + dy² + dz². (a) Consider the vector with components V" = (1,-1,0,0). Determine V and V. V. (b) Consider now the coordinate system x' (u, v, y, z) such that u =t-x, v=t+x. [2 marks] Write down the line element, the metric, the Christoffel symbols and the Riemann curvature tensor in the new coordinates. [See the Appendix of this document.] [5 marks] (c) Determine V", that is, write the object in question A1.a in the coordinate system x'. Verify explicitly that V. V is invariant under the coordinate transformation. Question A2 [5 marks] Suppose that A, is a covector field, and consider the object Fv=AAμ. (a) Show explicitly that F is a tensor, that is, show that it transforms appropriately under a coordinate transformation. [5 marks] (b)…arrow_forwardHow does boiling point of water decreases as the altitude increases?arrow_forwardNo chatgpt pls will upvotearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Mechanical work done (GCSE Physics); Author: Dr de Bruin's Classroom;https://www.youtube.com/watch?v=OapgRhYDMvw;License: Standard YouTube License, CC-BY