Henry, Tom, and Fred are breaking up their partnership and dividing among themselves the partnership’s real estate assets equally owned by the three of them. The assets are divided into three shares
Table 3-12
S1 | S2 | S3 | |
|
|
|
|
|
|
|
|
|
|
|
|
a. Which of the shares are fair shares to Henry?
b. Which of the shares are fair shares to Tom?
c. Which of the shares are fair shares to Fred?
d. Find all possible fair divisions of the assets using
e. Of the fair divisions found in (d), which one is the best?
(a)
To find:
Fair shares for Henry from the given table.
Answer to Problem 1E
Solution:
Fair shares for Henry are
Explanation of Solution
Given:
The given table for value of shares to each player is shown in table 1.
Table 1
S1 | S2 | S3 | |
Fair share for each player should be
Calculation:
The value of shares to each player is,
S1 | S2 | S3 | |
There are total 3 players in which assets will be divided so the fair share for each player would be
Then according to table fair shares for Henry will be
Conclusion:
Thus, fair shares for Henry are
(b)
To find:
Fair shares for Tom from the given table.
Answer to Problem 1E
Solution:
Fair shares for Tom are
Explanation of Solution
Given:
The given table for value of shares to each player is shown in table 1.
Table 1
S1 | S2 | S3 | |
Fair share for each player should be
Calculation:
The value of shares to each player is,
S1 | S2 | S3 | |
There are total 3 players in which assets will be divided so the fair share for each player would be
Then according to table fair shares for Tom will be
Conclusion:
Thus, fair shares for Tom are
(c)
To find:
Fair shares for Fred from the given table.
Answer to Problem 1E
Solution:
Fair shares for Fred are
Explanation of Solution
Given:
The given table for value of shares to each player is shown in table 1.
Table 1
S1 | S2 | S3 | |
Fair share for each player should be
Calculation:
The value of shares to each player is,
S1 | S2 | S3 | |
There are total 3 players in which assets will be divided so the fair share for each player would be
Then according to table fair shares for Fred will be
Conclusion:
Thus, fair shares for Fred are
(d)
To find:
All possible fair divisions of the assets using given table.
Answer to Problem 1E
Solution:
The fair division of assets is possible in two ways:
i. Henry gets
ii. Henry gets
Explanation of Solution
Given:
The given table for value of shares to each player is shown in table 1.
Table 1
S1 | S2 | S3 | |
Fair share for each player should be
Calculation:
The value of shares to each player is,
S1 | S2 | S3 | |
There are total 3 players in which assets will be divided so the fair share for each player would be
Henry and Tom both have fair shares
i. Henry gets
ii. Henry gets
Conclusion:
Thus, the fair division of assets is possible in two ways:
i. Henry gets
ii. Henry gets
(e)
To find:
The best fair division among the fair divisions found in part (4).
Answer to Problem 1E
Solution:
The best fair division of assets is: Henry gets
Explanation of Solution
Given:
The given table for value of shares to each player is shown in table 1.
Table 1
S1 | S2 | S3 | |
Fair share for each player should be
Calculation:
The value of shares to each player is,
S1 | S2 | S3 | |
There are total 3 players in which assets will be divided so the fair share for each player would be
Henry and Tom both have fair shares
i. Henry gets
ii. Henry gets
The best fair division is the one in which players are more happy. Henry would be more happy in choice (i) and Tom also would be more happy in choice (i). Fred is happy in equally in both choices.
So the best fair division of assets is: Henry gets
Conclusion:
Thus, the best fair division of assets is: Henry gets
Want to see more full solutions like this?
Chapter 3 Solutions
Excursions in Mathematics, Loose-Leaf Edition Plus MyLab Math with Pearson eText -- 18 Week Access Card Package
Additional Math Textbook Solutions
Calculus: Early Transcendentals (2nd Edition)
A First Course in Probability (10th Edition)
Elementary Statistics
Elementary & Intermediate Algebra
Elementary Statistics (13th Edition)
Finite Mathematics for Business, Economics, Life Sciences and Social Sciences
- 6. Norms and Metrics • Show that the function || || norm on Rn. = √xT Ax, where A is a positive definite matrix, defines a . Prove that the matrix norm induced by the vector L²-norm satisfies ||A||2 ✓ max (ATA), where Amax is the largest eigenvalue.arrow_forward2. Linear Transformations • • Let T: R3 R³ be a linear transformation such that T(x, y, z) = (x + y, y + z, z + → x). Find the matrix representation of T with respect to the standard basis. Prove that a linear transformation T : VV is invertible if and only if it is bijective.arrow_forward11. Positive Definiteness Prove that a matrix A is positive definite if and only if all its eigenvalues are positive.arrow_forward
- 21. Change of Basis Prove that the matrix representation of a linear transformation T : V → V depends on the choice of basis in V. If P is a change of basis matrix, show that the transformation matrix in the new basis is P-¹AP.arrow_forward14. Projection Matrices Show that if P is a projection matrix, then P² = P. Find the projection matrix onto the subspace spanned by the vector (1,2,2)T.arrow_forward4. Diagonalization Prove that a square matrix A is diagonalizable if and only if A has n linearly independent eigenvectors. • Determine whether the following matrix is diagonalizable: [54 2 B = 01 -1 3arrow_forward
- 8. Determinants • • Prove that the determinant of a triangular matrix is the product of its diagonal entries. Show that det(AB) = det(A)det(B) for any two square matrices A and B.arrow_forward15. Tensor Products • • Define the tensor product of two vector spaces. Compute the tensor product of (1,0) and (0, 1) in R². Discuss the role of tensors in multilinear algebra and provide an example of a second-order tensor.arrow_forward20. Numerical Methods • Describe the QR decomposition method and explain its use in solving linear systems. • Solve the following system numerically using Jacobi iteration: 10x+y+z = 12, 2x+10y+z = 13, 2x+2y+10z = 14.arrow_forward
- 1. Vector Spaces • Prove that the set of all polynomials of degree at most n forms a vector space over R. Determine its dimension. • = Let VR³ and define a subset W = {(x, y, z) Є R³ | x + y + z = 0}. Prove that W is a subspace of V and find its basis.arrow_forward24. Spectral Decomposition Explain the spectral decomposition of a symmetric matrix and its applications. • Compute the spectral decomposition of: A = 5 4arrow_forward3. Eigenvalues and Eigenvectors • Find the eigenvalues and eigenvectors of the matrix: 2 1 A = = Prove that if A is a symmetric matrix, then all its eigenvalues are real.arrow_forward