![Chemistry for Engineering Students](https://www.bartleby.com/isbn_cover_images/9781337398909/9781337398909_largeCoverImage.gif)
Concept explainers
• describe the chemical processes used in biomass production and conversion to biofuels.
![Check Mark](/static/check-mark.png)
Interpretation: The chemical processes used in biomass production and conversion of biomass to biofuels should be described.
Concept Introduction: In the biomass production, organic materials are converted into some form which can be used to produce bio-energy.
This is defined as increase in the organic matter concentration, this production adds the organic matter in the given area. Biomass is a renewable source of energy as it is obtained from plants and animals waste.
Explanation of Solution
In the biomass production, there are two types of productions as explained below:
Primary production: This is the energy obtained by plants by the process of photosynthesis. The excess energy is stored and added to the total biomass of the ecosystem.
Secondary production: This is defined by the absorption of the organic matter by tissues of the organisms. The ingestion by animals comes under this category. The process involves the decomposition of organic matter with the help of microorganisms.
Now, biomass to biofuel conversion is most important step in the agricultural world. Biomass is referred to the waste like trees, grass and other garden waste in the agriculture. This process can reduce the emission of greenhouse gases in the environment. This also balances the ecology. The process of biomass conversion directly uses the energy and the amount of energy used depends on the technique applied for the conversion.
There are main two types of conversions:
- Thermal conversion
- Chemical conversion
Thermal conversion: As the name suggests, in thermal conversion, heat plays an important role in biomass conversion.
This is further divided into three steps:
- Combustion
- Gasification
- Pyrolysis
The first process involved the combustion of biomass, the efficiency of this method of conversion is very low and it also affects the environment.
In gasification, the biomass is heated at very high temperatures in the presence of oxygen but in the controlled amount.
The pyrolysis involves the heating of biomass at very high temperatures in the absence of oxygen.
Chemical conversion: This process uses enzymes and microorganisms for the breakdown of biomass. The sub-processes are as follows:
Anerobic digestion: This converts biomass to methane.
Fermentation: This converts starch to ethanol and used in the manufacturing of alcohol
Composting: In this process, dry organic matter is decomposed aerobically in the presence of microorganisms. This is commonly used to produce heat.
Want to see more full solutions like this?
Chapter 3 Solutions
Chemistry for Engineering Students
- 2. 200 LOD For an unknown compound with a molecular ion of 101 m/z: a. Use the molecular ion to propose at least two molecular formulas. (show your work) b. What is the DU for each of your possible formulas? (show your work) C. Solve the structure and assign each of the following spectra. 8 6 4 2 (ppm) 150 100 50 ō (ppm) 4000 3000 2000 1500 1000 500 HAVENUMBERI-11arrow_forwardComplete the spectroscopy with structurearrow_forwardComplete the spectroscopy with structurearrow_forward
- Given the following concentrations for a system, calculate the value for the reaction quotient: Cl2(g)+ CS2(g) ⇌ CCl4(g)+ S2Cl2(g) Cl2 = 31.1 atm CS2 = 91.2 atm CCl4 = 2.12 atm S2Cl2 = 10.4 atmarrow_forwardMatch each chemical or item with the proper disposal or cleanup mwthod, Not all disposal and cleanup methods will be labeled. Metal sheets C, calcium, choroide solutions part A, damp metal pieces Part B, volumetric flask part A. a.Return to correct lables”drying out breaker. Place used items in the drawer.: Rinse with deionized water, dry as best you can, return to instructor. Return used material to the instructor.: Pour down the sink with planty of running water.: f.Pour into aqueous waste container. g.Places used items in garbage.arrow_forwardWrite the equilibrium constant expression for the following reaction: HNO2(aq) + H2O(l) ⇌ H3O+(aq) + NO2-(aq)arrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningWorld of ChemistryChemistryISBN:9780618562763Author:Steven S. ZumdahlPublisher:Houghton Mifflin College Div
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337398909/9781337398909_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305580343/9781305580343_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780618562763/9780618562763_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285199047/9781285199047_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534420123/9780534420123_smallCoverImage.gif)