![EBK PHYSICAL SCIENCE](https://www.bartleby.com/isbn_cover_images/8220103146722/8220103146722_largeCoverImage.jpg)
EBK PHYSICAL SCIENCE
11th Edition
ISBN: 8220103146722
Author: Tillery
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 3, Problem 15PEB
A 175.0 lb hiker is able to ascend a 1,980.0 ft high slope in 1 hour 45 minutes. (a) How much work did the hiker do? (b) What was the average power output in hp?
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
No chatgpt pls
4.4 A man is dragging a trunk up the
loading ramp of a mover's truck. The
ramp has a slope angle of 20.0°, and
the man pulls upward with a force F
whose direction makes an angle of 30.0°
75.0°
with the ramp (Fig. E4.4). (a) How large a force F is necessary for the
component Fx parallel to the ramp to be 90.0 N? (b) How large will the
component Fy perpendicular to the ramp be then?
Figure E4.4
30.0
20.0°
1.
*
A projectile is shot from a launcher at an angle e, with an initial velocity
magnitude v., from a point even with a tabletop. The projectile lands on the tabletop
a horizontal distance R (the "range") away from where it left the launcher. Set this
up as a formal problem, and solve for vo (i.e., determine an expression for Vo in
terms of only R, 0., and g). Your final equation will be called Equation 1.
Chapter 3 Solutions
EBK PHYSICAL SCIENCE
Ch. 3 - According to the definition of mechanical work,...Ch. 3 -
2. The metric unit of a joule (J) is a unit of...Ch. 3 -
3. A N m/s is a unit of...Ch. 3 - Prob. 4ACCh. 3 - Prob. 5ACCh. 3 -
6. A power rating of 1 joule per s is known as a...Ch. 3 -
7. According to PE = mgh, gravitational potential...Ch. 3 -
8. Two cars have the same mass, but one is moving...Ch. 3 - Prob. 9ACCh. 3 -
10. Potential energy and kinetic energy are...
Ch. 3 -
11. Many forms of energy in use today can be...Ch. 3 -
12. In all of our energy uses, we find that...Ch. 3 - Prob. 13ACCh. 3 - Prob. 14ACCh. 3 - Prob. 15ACCh. 3 -
16. The amount of energy generated by...Ch. 3 - Prob. 17ACCh. 3 - Prob. 18ACCh. 3 -
19. A renewable energy source is...Ch. 3 - Prob. 20ACCh. 3 - Prob. 21ACCh. 3 -
22. Which quantity has the greatest influence on...Ch. 3 - Prob. 23ACCh. 3 -
24. Most all energy comes to and leaves Earth in...Ch. 3 -
25. A spring-loaded paper clamp exerts a force of...Ch. 3 -
26. The force exerted when doing work by lifting...Ch. 3 -
27. The work accomplished by lifting an object...Ch. 3 -
28. An iron cannonball and a bowling ball are...Ch. 3 -
29. Two students are poised to dive off...Ch. 3 -
30. A car is moving straight down a highway. What...Ch. 3 - 31. Two identical cars are moving straight down a...Ch. 3 - Prob. 32ACCh. 3 - Prob. 33ACCh. 3 -
34. Today, the basic problem with using solar...Ch. 3 - Prob. 35ACCh. 3 -
36. Petroleum is believed to have formed over...Ch. 3 -
1. How is work related to energy?
Ch. 3 -
2. What is the relationship between the work done...Ch. 3 - Does a person standing motionless in the aisle of...Ch. 3 - Prob. 4QFTCh. 3 -
5. Is a kWh a unit of work, energy, power, or...Ch. 3 -
6. If energy cannot be destroyed, why do some...Ch. 3 -
7. A spring damp exerts a force on a stack of...Ch. 3 -
8. Why are petroleum, natural gas, and coal...Ch. 3 -
9. From time to time, people claim to have...Ch. 3 -
10. Define a joule. What is the difference...Ch. 3 -
11. Compare the energy needed to raise a mass 10...Ch. 3 -
12. What happens to the kinetic energy of a...Ch. 3 -
l. Evaluate the requirement that something must...Ch. 3 -
2. What are the significant similarities and...Ch. 3 -
3. Whenever you do work on something, you give it...Ch. 3 -
4. Simple machines are useful because they are...Ch. 3 -
5. Use the equation for kinetic energy to prove...Ch. 3 -
6. Describe at least several examples of negative...Ch. 3 -
7. The forms of energy are the result of...Ch. 3 -
8. Most technological devices convert one of the...Ch. 3 -
9. Are there any contradictions to the law of...Ch. 3 -
1. How much work is done when a force of 800.0 N...Ch. 3 -
2. A force of 400.0 N is exerted on a 1,250 N car...Ch. 3 -
3. A 5.0 kg textbook is raised a distance of 30.0...Ch. 3 -
4. An electric hoist does 196,000 J of work in...Ch. 3 -
5. What is the horsepower of a 1,500.0 kg car...Ch. 3 -
6. (a) How many horsepower is a 250 W lightbulb?...Ch. 3 -
7. What is the kinetic energy of a 30–gram bullet...Ch. 3 -
8. How much work will be done by a 30–gram bullet...Ch. 3 -
9. A force of 50.0 lb is used to push a box 10.0...Ch. 3 -
10. (a) How much work is done in raising a 50.0...Ch. 3 -
11. What is the kinetic energy in J of a 60.0 g...Ch. 3 -
12. (a) What is the kinetic energy of a 1,500.0...Ch. 3 -
13. The driver of an 800.0 kg car decides to...Ch. 3 -
14. Compare the kinetic energy of an 800.0 kg car...Ch. 3 -
15. A 175.0 lb hiker is able to ascend a 1,980.0...Ch. 3 -
16. (a) How many seconds will it take a 10.0 hp...Ch. 3 -
17. A ball is dropped from 20.0 ft above the...Ch. 3 -
18. What is the velocity of a 60.0 kg jogger with...Ch. 3 -
19. A small sports car and a pickup truck start...Ch. 3 -
20. A 70.0 kg student runs up the stairs of a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 2. A projectile is shot from a launcher at an angle 0,, with an initial velocity magnitude vo, from a point even with a tabletop. The projectile hits an apple atop a child's noggin (see Figure 1). The apple is a height y above the tabletop, and a horizontal distance x from the launcher. Set this up as a formal problem, and solve for x. That is, determine an expression for x in terms of only v₁, o,y and g. Actually, this is quite a long expression. So, if you want, you can determine an expression for x in terms of v., 0., and time t, and determine another expression for timet (in terms of v., 0., y and g) that you will solve and then substitute the value of t into the expression for x. Your final equation(s) will be called Equation 3 (and Equation 4).arrow_forward4.56 ... CALC An object of mass m is at rest in equilibrium at the origin. At t = 0 a new force F(t) is applied that has components Fx(t) = k₁ + k₂y Fy(t) = k3t where k₁, k2, and k3 are constants. Calculate the position (1) and veloc- ity (t) vectors as functions of time.arrow_forward4.14 ⚫ A 2.75 kg cat moves in a straight line (the x-axis). Figure E4.14 shows a graph of the x- component of this cat's velocity as a function of time. (a) Find the maximum net force on this cat. When does this force occur? (b) When is the net force on the cat equal to zero? (c) What is the net force at time 8.5 s? Figure E4.14 V₁ (m/s) 12.0 10.0 8.0 6.0 4.0 2.0 0 t(s) 2.0 4.0 6.0 8.0 10.0arrow_forward
- 4.36 ... CP An advertisement claims that a particular automobile can "stop on a dime." What net force would be necessary to stop a 850 kg automobile traveling initially at 45.0 km/h in a distance equal to the di- ameter of a dime, 1.8 cm?arrow_forward4.46 The two blocks in Fig. P4.46 are connected by a heavy uniform rope with a mass of 4.00 kg. An up- ward force of 200 N is applied as shown. (a) Draw three free-body diagrams: one for the 6.00 kg block, one for B the 4.00 kg rope, and another one for the 5.00 kg block. For each force, indicate what object exerts that force. (b) What is the acceleration of the system? (c) What is the tension at the top of the heavy rope? (d) What is the tension at the midpoint of the rope? Figure P4.46 F= 200 N 4.00 kg 6.00 kg 5.00 kgarrow_forward4.35 ⚫ Two adults and a child want to push a wheeled cart in the direc- tion marked x in Fig. P4.35 (next page). The two adults push with hori- zontal forces F and F as shown. (a) Find the magnitude and direction of the smallest force that the child should exert. Ignore the effects of friction. (b) If the child exerts the minimum force found in part (a), the cart ac- celerates at 2.0 m/s² in the +x-direction. What is the weight of the cart? Figure P4.35 F₁ = 100 N 60° 30° F2 = 140 Narrow_forward
- 4.21 ⚫ BIO World-class sprinters can accelerate out of the starting blocks with an acceleration that is nearly horizontal and has magnitude 15 m/s². How much horizontal force must a 55 kg sprinter exert on the starting blocks to produce this acceleration? Which object exerts the force that propels the sprinter: the blocks or the sprinter herself?arrow_forwardNo chatgpt pls will upvotearrow_forwardPlease don't use Chatgpt will upvote and give handwritten solutionarrow_forward
- The kinetic energy of a pendulum is greatest Question 20Select one: a. at the top of its swing. b. when its potential energy is greatest. c. at the bottom of its swing. d. when its total energy is greatest.arrow_forwardPart a-D plarrow_forwardThe figure (Figure 1) shows representations of six thermodynamic states of the same ideal gas sample. Figure 1 of 1 Part A ■Review | Constants Rank the states on the basis of the pressure of the gas sample at each state. Rank pressure from highest to lowest. To rank items as equivalent, overlap them. ▸ View Available Hint(s) highest 0 ☐ ☐ ☐ ☐ ☐ ☐ Reset Help B F A D E The correct ranking cannot be determined. Submit Previous Answers × Incorrect; Try Again; 4 attempts remaining Provide Feedback lowest Next >arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168277/9781938168277_smallCoverImage.gif)
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078807213/9780078807213_smallCoverImage.gif)
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781111794378/9781111794378_smallCoverImage.gif)
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534408961/9780534408961_smallCoverImage.gif)
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Work-Energy Theorem | Physics Animation; Author: EarthPen;https://www.youtube.com/watch?v=GSTW7Mlaoas;License: Standard YouTube License, CC-BY