HEAT+MASS TRANSFER:FUND.+APPL.
6th Edition
ISBN: 9780073398198
Author: CENGEL
Publisher: RENT MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3, Problem 13CP
How does the thermal resistance network associated with a single-layer plane wall differ from the one associated with a five-layer composite wall?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A house has a composite wall of wood, fiberglass insulation and plaster board, as indicated in Figure 2.1. The total wall surface area is 300 m2.
- Represent the composite wall by a thermal circuit, and label all thecomponents in the circuit.
- Determine the total heat transfer rate, ?̇ through the wall and the inner surface temperature of the house.
It is necessary to insulate a flat surface so that the rate of heat loss per unit area of this
surface does not exceed 450 W/m2
. The temperature difference across the insulating
layers is 400K. Evaluate the thickness of insulation if
(i) The insulation is made of asbestos cement having thermal conductivity of 0.11
W/m-K and
(ii) The insulation is made of fire clay having thermal conductivity of 0.84 W/m-K.
نقطتان )2(
A composite walls are constructed
from an inner brick wall with thick
L1= 25 cm and k1= 0.4 W/m K, a steel
layer of of thick L2= 0.002 m and k2=
54 W/m K, and a layer of ceramic
insulation of thick L3= 8 cm and k3 =
0.2 W/m K. The inside temperature
of the brick layer was measured at
600 C and the temperature of the
outside of the insulation 60 C.
Calculate the heat flux through the
wall
626.82 W/m2 O
471.91 W/m2 O
None
251.52 W/m2 O
Chapter 3 Solutions
HEAT+MASS TRANSFER:FUND.+APPL.
Ch. 3 - Consider heat conduction through a wall of...Ch. 3 - Consider heat conduction through a plane wall....Ch. 3 - What does the thermal resistance of a medium...Ch. 3 - Can we defme the convection resistance for a unit...Ch. 3 - Consider steady heat transfer through the wall of...Ch. 3 - How is the combined heat transfer coefficient...Ch. 3 - Why are the convection and the radiation...Ch. 3 - Consider steady one-dimensional heat transfer...Ch. 3 - Someone comments that a microwave oven can be...Ch. 3 - Consider two cold canned drinks, one wrapped in a...
Ch. 3 - The bottom of a pan is made of a 4-mm-thick...Ch. 3 - Consider a surface of area A at which the...Ch. 3 - How does the thermal resistance network associated...Ch. 3 - Consider steady one-dimensional heat transfer...Ch. 3 - Consider a window glass consisting of two...Ch. 3 - Prob. 16PCh. 3 - Consider a person standing in a room at 20C with...Ch. 3 - Consider an electrically heated brick house...Ch. 3 - A12-cm18-cm circuit board houses on its surface...Ch. 3 - Water is boiling in a 25-cm-diameter aluminum pan...Ch. 3 - A cylindrical resistor element on a circuit board...Ch. 3 - Prob. 22PCh. 3 - A1.0m1.5m double-pane window consists of two...Ch. 3 - Prob. 24PCh. 3 - Prob. 25PCh. 3 - Prob. 26PCh. 3 - Prob. 27PCh. 3 - Prob. 28EPCh. 3 - To defog the rear window of an automobile, a very...Ch. 3 - A transparent film is to be bonded onto the top...Ch. 3 - To defrost ice accumulated on the outer surface of...Ch. 3 - Prob. 32PCh. 3 - Prob. 33PCh. 3 - Prob. 34PCh. 3 - Prob. 35PCh. 3 - Heat is to be conducted along a circuit board that...Ch. 3 - Prob. 37EPCh. 3 - Consider a house that has a 10m20-m base and a...Ch. 3 - Prob. 39EPCh. 3 - Prob. 40PCh. 3 - Prob. 41PCh. 3 - Prob. 42PCh. 3 - Prob. 43PCh. 3 - What is thermal contact resistance? How is it...Ch. 3 - Will the thermal contact resistance be greater for...Ch. 3 - Explain how the thermal contact resistance can be...Ch. 3 - A waII consists of two layers of insulation...Ch. 3 - Prob. 48CPCh. 3 - Consider two surfaces pressed against each other....Ch. 3 - Prob. 50PCh. 3 - Two 5-cm-diameter, 15-cm-long aluminum bars...Ch. 3 - Prob. 52PCh. 3 - Two identical aluminum plates with thickness of 30...Ch. 3 - A tvolayer wall is made of two metal plates, with...Ch. 3 - Prob. 55PCh. 3 - An aluminum plate and a stainless steel plate are...Ch. 3 - Prob. 57PCh. 3 - Prob. 58PCh. 3 - Prob. 59PCh. 3 - Prob. 60PCh. 3 - Prob. 61PCh. 3 - What are the two approaches used in the...Ch. 3 - The thermal resistance networks can also be used...Ch. 3 - When plotting the thermal resistance network...Ch. 3 - A 10-cm-thick vall is to be constructed with...Ch. 3 - Prob. 66EPCh. 3 - Prob. 67PCh. 3 - Prob. 68PCh. 3 - Prob. 69PCh. 3 - Prob. 70PCh. 3 - Prob. 71PCh. 3 - Prob. 72PCh. 3 - A 12-m-long and 5-m-high wall is constructed of...Ch. 3 - Prob. 74EPCh. 3 - Prob. 75PCh. 3 - Prob. 76PCh. 3 - Prob. 77PCh. 3 - What is an infinitely long cylinder? When is it...Ch. 3 - Can the thermal resistance concept be used for a...Ch. 3 - Consider a short cylinder whose top and bottom...Ch. 3 - Prob. 81PCh. 3 - Prob. 82PCh. 3 - Prob. 83PCh. 3 - Superheated steam at an average temperature 20C is...Ch. 3 - Prob. 85PCh. 3 - Prob. 86PCh. 3 - Prob. 87EPCh. 3 - Prob. 88EPCh. 3 - Prob. 89EPCh. 3 - Prob. 90PCh. 3 - Prob. 91PCh. 3 - Prob. 92PCh. 3 - Prob. 93EPCh. 3 - Prob. 94PCh. 3 - Prob. 95PCh. 3 - Prob. 96PCh. 3 - Liquid hydrogen is flowing through an insulated...Ch. 3 - Exposure to high concentrations of gaseous ammonia...Ch. 3 - A mixture of chemicals is flowing in a pipe...Ch. 3 - Ice slurry is being transported in a pipe...Ch. 3 - Prob. 101PCh. 3 - Prob. 102PCh. 3 - Prob. 103PCh. 3 - What is the critical radius of insulation? How is...Ch. 3 - Prob. 105CPCh. 3 - Prob. 106CPCh. 3 - Prob. 107CPCh. 3 - A pipe is insulated such that the outer radius of...Ch. 3 - A 0.083-in-diameter electrical wire at 90F is...Ch. 3 - Repeat Prob. 3-109E, assuming a thermal contact...Ch. 3 - Prob. 111PCh. 3 - Prob. 112PCh. 3 - Hot air is to be cooled as it is forced to flow...Ch. 3 - Prob. 114CPCh. 3 - Prob. 115CPCh. 3 - The fins attached to a surface are determined to...Ch. 3 - Explain how the fins enhance heat transfer from a...Ch. 3 - How does the overall effectiveness of a finned...Ch. 3 - Hot water is to be cooled as it flows through the...Ch. 3 - Consider two finned surfaces that are identical...Ch. 3 - The heat transfer surface area of a fin is equal...Ch. 3 - Does the (a) efficiency and (b) effectiveness of a...Ch. 3 - Two pin fins are identical, except that the...Ch. 3 - Two plate fins of constant rectangular cross...Ch. 3 - Two finned surfaces are identical, except that the...Ch. 3 - Obtain a relation for the fin efficiency for a fin...Ch. 3 - Prob. 127PCh. 3 - Consider a very long rectangular fin attached to a...Ch. 3 - Prob. 129PCh. 3 - Prob. 130PCh. 3 - Prob. 131PCh. 3 - Prob. 132PCh. 3 - Prob. 133EPCh. 3 - Prob. 134EPCh. 3 - Prob. 135PCh. 3 - Prob. 136PCh. 3 - Prob. 137PCh. 3 - Prob. 138PCh. 3 - Prob. 139PCh. 3 - Prob. 140PCh. 3 - Prob. 141PCh. 3 - Prob. 142PCh. 3 - Prob. 143PCh. 3 - Prob. 144PCh. 3 - Prob. 145PCh. 3 - Prob. 146PCh. 3 - The human body is adaptable to extreme climatic...Ch. 3 - Consider the conditions of Example 3-14 in the...Ch. 3 - Consider the conditions of Example 3-14 in the...Ch. 3 - Prob. 150PCh. 3 - What is a conduction shape factor? How is it...Ch. 3 - What is the value of conduction shape factors in...Ch. 3 - Prob. 153PCh. 3 - A thin-walled cylindrical container is placed...Ch. 3 - Prob. 155PCh. 3 - Prob. 156PCh. 3 - Prob. 157PCh. 3 - Prob. 158EPCh. 3 - Prob. 159PCh. 3 - Prob. 160PCh. 3 - Prob. 161PCh. 3 - Prob. 162PCh. 3 - Prob. 163PCh. 3 - Prob. 164PCh. 3 - Consider a house with a flat roof whose outer...Ch. 3 - Prob. 166PCh. 3 - Radioactive material, stored in a spherical vessel...Ch. 3 - What is the R-value of a wall? How does it differ...Ch. 3 - What is effective emissivity for a plane-parallel...Ch. 3 - Prob. 170CPCh. 3 - What is a radiant barrier? What kinds of materials...Ch. 3 - Consider a house whose attic space is ventilated...Ch. 3 - Prob. 173PCh. 3 - Prob. 174PCh. 3 - Prob. 175PCh. 3 - Prob. 176PCh. 3 - Prob. 177PCh. 3 - Prob. 178PCh. 3 - Determine the winter R-value and the U-factor of a...Ch. 3 - The overall heat transfer coefficient (the...Ch. 3 - Prob. 181EPCh. 3 - Determine the summer and winter R-values. in m2 ....Ch. 3 - The overall heat transfer coefficient of a wall is...Ch. 3 - Two homes are identical, except that the walls of...Ch. 3 - Prob. 185PCh. 3 - Consider two identical people each generating 60 V...Ch. 3 - Cold conditioned air at 12C is flowing inside a...Ch. 3 - Hot water is flowing at an average velocity of 1.5...Ch. 3 - Prob. 189PCh. 3 - Prob. 190PCh. 3 - Prob. 191PCh. 3 - Prob. 192PCh. 3 - Prob. 193PCh. 3 - Prob. 194PCh. 3 - Prob. 195PCh. 3 - Prob. 196PCh. 3 - Prob. 197PCh. 3 - A total of 10 rectangular aluminum fins...Ch. 3 - Prob. 199PCh. 3 - A plane wall surface at 200C is to be cooled with...Ch. 3 - Prob. 201PCh. 3 - Prob. 202PCh. 3 - Prob. 203PCh. 3 - Prob. 204PCh. 3 - A 0.6-rn-diameter, 1.9-rn-long cylindrical tank...Ch. 3 - Prob. 206PCh. 3 - Prob. 207PCh. 3 - A thin-walled spherical tank is buried in the...Ch. 3 - Heat is lost at a rate of 275 W per m2 area of a 1...Ch. 3 - Prob. 210PCh. 3 - Heat is generated steadily in a 3-cm-diameter...Ch. 3 - Prob. 212PCh. 3 - Prob. 213PCh. 3 - Prob. 214PCh. 3 - Prob. 215PCh. 3 - Prob. 216PCh. 3 - Consider two walls. A and B, with the same surface...Ch. 3 - Prob. 218PCh. 3 - A room at 20C air temperature is losing heat to...Ch. 3 - Prob. 220PCh. 3 - A 1-cm-diameter, 30cm-long fin made of aluminum...Ch. 3 - A hot surface at 80C in air at 20C is to be cooled...Ch. 3 - A cylindrical pin fin of diameter 0.6 cm and...Ch. 3 - A 3-cm-long. 2-nuti x 2-mm rectangular...Ch. 3 - Two finned surfaces with long fins are identical,...Ch. 3 - A 20-cm-diameter hot sphere at 120C is buried in...Ch. 3 - A 25-cm-diameter, 2.4-rn-long vertical cylinder...Ch. 3 - Prob. 228PCh. 3 - The walls of a food storage facility are made of a...Ch. 3 - The equivalent thermal resistance for the thermal...Ch. 3 - Prob. 231PCh. 3 - Prob. 232PCh. 3 - Prob. 233PCh. 3 - The fin efficiency is defined as the ratio of the...Ch. 3 - Prob. 235PCh. 3 - In the United States, building insulation is...Ch. 3 - Prob. 237PCh. 3 - A plane brick wall (k=0.7W/m.K) and is 10 cm...Ch. 3 - The temperature in deep space is close to absolute...Ch. 3 - In the design of electronic components, it is...Ch. 3 - Using cylindrical samples of the same material,...Ch. 3 - Find out about the wall construction of the cabins...Ch. 3 - Prob. 243PCh. 3 - A house with 200-m2 floor space is to be heated...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 1.1 On a cold winter day, the outer surface of a 0.2-m-thick concrete wall of a warehouse is exposed to temperature of –5°C, while the inner surface is kept at 20°C. The thermal conductivity of the concrete is 1.2 W/m K. Determine the heat loss through the wall, which is 10-m long and 3-m high. Problem 1.1arrow_forwardA composite refrigerator wall is composed of 5 cm of corkboard sandwiched between a 1.2-cm-thick layer of oak and a 0.8-mm-thick layer of aluminum lining on the inner surface. The average convection heat transfer coefficients at the interior and exterior wall are 11 and 8.5W/(m2K) respectively. (a) Draw the thermal circuit. (b) Calculate the individual resistances of the components of this composite wall and the resistances at the surfaces. (c) Calculate the overall heat transfer coefficient through the wall. (d) For an air temperature of 1C inside the refrigerator and 32C outside, calculate the rate of heat transfer per unit area through the wall.arrow_forwardAn electronic device that internally generates 600 mW of heat has a maximum permissible operating temperature of 70C. It is to be cooled in 25C air by attaching aluminum fins with a total surface area of 12cm2. The convection heat transfer coefficient between the fins and the air is 20W/m2K. Estimate the operating temperature when the fins are attached in such a way that (a) there is a contact resistance of approximately 50 K/W between the surface of the device and the fin array and (b) there is no contact resistance (in this case, the construction of the device is more expensive). Comment on the design options.arrow_forward
- The outer facing of a room is constructed from 25 cm thick brick, 2.5 cm of mortar, 10 cm of limestone (k = 0.186 W/m-K) and 1.2 cm of plaster (k = 0.096 W/m-K). Thermal conductivities of mortar and brick are both 0.52 W/m-K. Assume that the heat transfer coefficients on the inside (plaster side) and the outside (brick side) surfaces of the wall to be 6 and 12 W/sq. m, respectively. Calculate the rate of heat transfer per 10 sq. m of the wall surface from the room at 18 C to the outside air at 36 C.arrow_forwardA composite structural wall having a thermal conductivity of 0.3 W/mK and a thickness of 100 mm is being replaced by a concrete wall having thermal conductivity 0.9 W/mK. If the heat rate is to be 80% of the heat rate through the composite wall, the wall thickness (in mm) required for concrete wall is. Assume both walls are subjected to the same surface temperature difference.arrow_forwardHow many inches of insulation are required to insulate a ceiling such that the surface temperature of the ceiling facing the living area is within 2°C of the room air temperature? Assume a heat transfer coefficient on both sides of the ceiling of 2.84 W/(m2 • K) and a thermal conductivity of 0.0346 W/(m . K) for the insulation. The ceiling is 1.27 cm thick plasterboard with a thermal conductivity of 0.433 W/(m . K). Room temperature is 20°C and attic temperature is 49°C.arrow_forward
- asaparrow_forwardQuestion No. 17(a) A steel tube k=43.26 W/mK of 5.08 cm 10 and 7.62 cm 00 is covered with 2.54 cm of asbestos insulation k=0.208 W/Mk. The inside surface of the tube receives heat by convection from a hotgas at a -temperature of 316°C with heat transfer coefficient ha=284 W/m2K while the outer surface of Insulation is exposed to atmosphere air at 38°C with heat transfer coefficient of 17 W/m2 K Calculate heat loss to atmosphere for 3 m length of the tube and temperature drop across each layer. (b) Explain with neat sketch about pulverized fuel furnaces and its types.arrow_forwardQ1 A composite house wall is constructed from 1.2 cm layer of fiber insulating board, an 8.0 cm layer of loosely packed asbestos, and 10 cm layer of common brick. Assuming convection heat transfer coefficient of 12 W/m?.C on the both sides of the wall. Calculate the overall heat transfer coefficient for this arrangement. Thermal conductivities for building materials are korick= 0.76 W/m. C, koard-0.025 W/m.°C, and kabestos= 0.032 W/m. C)arrow_forward
- a flat wall is covered with a layer of insulation 1.0 in. thick whose thermal conductivity is 0.8 Btu/hr-ft- F. the temperature of the wall on the inside of the insulation is 600F. the wall loses heat to the environment by convection on the surface of the insulation. the average value of the convection heat transfer coefficient on the inslation surface is 950 Btu/hr-ft^2-F. compute the bulk temperature of the environment if the outer surface of the insulation does not exceed 105 F.arrow_forwardA transparent film will be glued onto an upper surface of a solid plate within a heated chamber. For common gluing, the temperature between the glue, a film and the solid board must be kept at 70 °C. The transparent film has a thickness of 1 mm and thermal conductivity 0.05 W/mK, while the solid board is 13 mm thick. thickness and thermal conductivity of 1.2 W / mK. Inside the climate chamber, the convection heat transfer coefficient is 70 W/m²K. The bottom surface of the solid plate is kept at 52 °C, determines the temperature inside the heated chamber and the temperature of the surface of the transparent film. Assume negligible thermal contact resistance.arrow_forwardA composite walls are constructed from an inner brick wall with thick L1= 25 cm and k1= 0.4 W/m K, a steel layer of of thick L2= 0.002 m and k2= 54 W/m K, and a layer of ceramic insulation of thick L3= 8 cm and k3 = 0.2 W/m K. The inside temperature of the brick layer was measured at 600 C and the temperature of the outside of the insulation 60 C. Calculate the heat flux through the wall None 251.52 W/m2 626.82 W/m2 471.91 W/m2 A sphere ( k=204 W/m K) with inner diameter 4 cm and outer diameter of 8 cm. The inside temperature is 100C and the outer temperature 50 C. Calculate the rate of heat transfer 2579 W 5127 W 8612 W none The heat is dissipated from the plate by convection and radiation into surrounds at 20 C. Take ɛ =0.8 , o =5.67x10**-8 and h0 = 6 W/m**2. K. If the surface temperature of the plate is 50 C,the value of the heat flux : from the plate is 394.93 W/m2 309.71 W /m2 479.27 W /m2arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license