Ice slurry is being transported in a pipe ( k = 15 W/m .K, D i =2 .5 cm, D o =3 cm and L= 5 m) and with an iliner surface temperature of 0°C. The ambient condition surrounding the pipe has a temperature of 20°C, a convection heat transfer coefficient of 10 V1in2K, and a dew point of 10°C. If the outer surface temperature of the pipe drops below the dew point. condensation can occur on the surface. Since this pipe is located in a vicinity of high-voltage devices, water droplets from the condensation can create an electrical hazard. To prevent an electrical accident, the pipe surface needs to be insulated. Detennine the insulation thickness for the pipe using a material with k = 0 .95W/m .K to prevent the outer surface temperature from dropping below the dew point.
Ice slurry is being transported in a pipe ( k = 15 W/m .K, D i =2 .5 cm, D o =3 cm and L= 5 m) and with an iliner surface temperature of 0°C. The ambient condition surrounding the pipe has a temperature of 20°C, a convection heat transfer coefficient of 10 V1in2K, and a dew point of 10°C. If the outer surface temperature of the pipe drops below the dew point. condensation can occur on the surface. Since this pipe is located in a vicinity of high-voltage devices, water droplets from the condensation can create an electrical hazard. To prevent an electrical accident, the pipe surface needs to be insulated. Detennine the insulation thickness for the pipe using a material with k = 0 .95W/m .K to prevent the outer surface temperature from dropping below the dew point.
Solution Summary: The author explains how to calculate the rate of heat transfers from side to side the wall.
Ice slurry is being transported in a pipe
(
k
=
15
W/m
.K,
D
i
=2
.5 cm, D
o
=3 cm and L= 5 m)
and with an iliner surface temperature of 0°C. The ambient condition surrounding the pipe has a temperature of 20°C, a convection heat transfer coefficient of 10 V1in2K, and a dew point of 10°C. If the outer surface temperature of the pipe drops below the dew point. condensation can occur on the surface. Since this pipe is located in a vicinity of high-voltage devices, water droplets from the condensation can create an electrical hazard. To prevent an electrical accident, the pipe surface needs to be insulated. Detennine the insulation thickness for the pipe using a material with
k = 0
.95W/m
.K
to prevent the outer surface temperature from dropping below the dew point.
A pump delivering 230 lps of water at 30C has a 300-mm diameter suction pipe and a 254-mm diameter discharge pipe as shown in the figure. The suction pipe is 3.5 m long and the discharge pipe is 23 m long, both pipe's materials are cast iron. The water is delivered 16m above the intake water level. Considering head losses in fittings, valves, and major head loss. a) Find the total dynamic head which the pump must supply. b)It the pump mechanical efficiency is 68%, and the motor efficiency is 90%, determine the power rating of the motor in hp.
The tensile 0.2 percent offset yield strength of AISI 1137 cold-drawn steel bars up to 1 inch in diameter from 2 mills and 25 heats is
reported as follows:
Sy 93
95
101
f
97 99
107 109 111
19 25 38 17 12 10 5 4
103
105
4
2
where Sy is the class midpoint in kpsi and fis the number in each class.
Presuming the distribution is normal, determine the yield strength exceeded by 99.0% of the population.
The yield strength exceeded by 99.0% of the population is
kpsi.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.