
Physics (5th Edition)
5th Edition
ISBN: 9780321976444
Author: James S. Walker
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 3, Problem 11PCE
A vector has the components Az = −36 m and Ay = 43 m. (a) What is the magnitude of this vector? (b) What angle does this vector make with the positive x axis?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
1) A horizontal wire carrying current I in +x direction on the x-axis from x=0 to x=2
2) A vertical wire carrying current I upward at along the x=2 line from y=0 to y=8
3) A diagonal straight wire started at the origin and it ends at y=8 x=2 carrying a current in SE direction ( diagonally downward); y=4x
In a regional magnetic field that is given in vector notation by
B = ( y i - x j )/(x^2+y^2+25)
As components
Bx = (y+1)/x^2+y^2+25)
By = (1- x )/(x^2+y^2+25)
Find the integral expression for the net force for each branch carrying 5 ampere current.
An electric power station that operates at 30 KV and uses
a 15:1 set step-up ideal transformer is producing 400MW
(Mega-Watt) of power that is to be sent to a big city
with only 2.0% loss. What
which is located 270 km
away
is the resistance of the Two wires that are
being used?
52
Slink, from Toy Story, is a slinky dog whose middle section is a giant spring with a spring constant of 10.9 N/m. Woody, who has a mass of 0.412 kg, grabs onto the tail end of Slink and steps off the bed (as shown in figure A) with no initial velocity and reaches the floor right as his velocity hits zero again (as shown in figure C).
Chapter 3 Solutions
Physics (5th Edition)
Ch. 3.1 - Is it possible for two vectors to be different...Ch. 3.2 - A vector has the components Ax = 5 m and Ay = 3 m....Ch. 3.3 - Several vectors are shown in Figure 3-16. The red...Ch. 3.4 - Which of the vectors shown in Figure 3-20 has the...Ch. 3.5 - An object moves along the brown path in Figure...Ch. 3.6 - Suppose the speed of the boat is increased in part...Ch. 3 - For the following quantities, indicate which is a...Ch. 3 - Which, if any of the vectors shown in Figure 3-36...Ch. 3 - Given that A+B=0, (a) how does the magnitude of B...Ch. 3 - Can a component of a vector be greater than the...
Ch. 3 - Prob. 5CQCh. 3 - Can a vector with zero magnitude heve one or more...Ch. 3 - Prob. 7CQCh. 3 - Prob. 8CQCh. 3 - Prob. 9CQCh. 3 - Prob. 10CQCh. 3 - Prob. 11CQCh. 3 - Use a sketch to show that two vectors of unequal...Ch. 3 - Rain is falling vertically downward and you are...Ch. 3 - When sailing, the wind feels stronger when you...Ch. 3 - Suppose that each component ot a certain vector is...Ch. 3 - Rank the vectors in Figure 3-37 in order of...Ch. 3 - Rank the vectors in Figure 3-37 in order of...Ch. 3 - Rank the vectors in Figure 3-37 in order of...Ch. 3 - The press box at a baseball park is 44.5 ft above...Ch. 3 - You are driving up a long, inclined road. After...Ch. 3 - A One-Percent Grade A road that rises 1 ft for...Ch. 3 - You walk in a straight line tor 95 m at an angle...Ch. 3 - Find the x and y components of a position vector r...Ch. 3 - A vector has the components Az = 22 m and Ay = 13...Ch. 3 - A vector has the components Az = 36 m and Ay = 43...Ch. 3 - A baseball diamond (Figure 3-38) is a square with...Ch. 3 - A lighthouse that rises 49 ft above the surface of...Ch. 3 - H2O A water molecule is shown schematically in...Ch. 3 - Prob. 15PCECh. 3 - You drive a car 660 ft to the east, then 340 ft to...Ch. 3 - Vector A has a magnitude of 50 units and points in...Ch. 3 - A treasure map directs you to start at a palm tree...Ch. 3 - A whale comes to the surface to breathe and then...Ch. 3 - Consider the vectors A and B shown in Figure 3-42....Ch. 3 - Refer to Figure 3-42 for the following questions...Ch. 3 - A vector A has a magnitude of 40.0 m and points in...Ch. 3 - An air traffic controller observes two airplanes...Ch. 3 - The initial velocity of a car, vi, is 45 km/h in...Ch. 3 - Vector A points in the positive x direction and...Ch. 3 - Vector A points in the negative x direction and...Ch. 3 - Vector A points in the negative y direction and...Ch. 3 - A basketball player runs down the court, following...Ch. 3 - A particle undergoes a displacement r of magnitude...Ch. 3 - A vector has a magnitude of 3.50 m and points in a...Ch. 3 - A vector A has a length of 6.1 m and points in the...Ch. 3 - The vector 5 2 A has a magnitude of 34 m and...Ch. 3 - Find the direction and magnitude of the vectors....Ch. 3 - Find the direction and magnitude of the vectors....Ch. 3 - For the vectors given in Problem 34, express (a)...Ch. 3 - Express each of the vectors in Figure 3-44 in unit...Ch. 3 - Referring to the vectors in Figure 3-44, express...Ch. 3 - The blue curves shown in Figure 3-45 display the...Ch. 3 - What are the direction and magnitude of your total...Ch. 3 - Predict/Calculate Moving the Knight Two of the...Ch. 3 - To visit your favorite ice cream shop, you must...Ch. 3 - Referring to Problem 41, suppose you lake 44 s to...Ch. 3 - You drive a car 1500 ft to the east, then 2500 ft...Ch. 3 - Predict/Calculate A jogger runs with a speed of...Ch. 3 - You throw a ball upward with an initial speed of...Ch. 3 - Consider a skateboarder who starts from rest at...Ch. 3 - In a soccer game a midfielder kicks the ball from...Ch. 3 - The accompanying photo shows a KC-10A Extender...Ch. 3 - As an airplane taxied on the runway with a speed...Ch. 3 - Referring to part (a) of Example 3-11, find the...Ch. 3 - A police car travels at 38.0 m/s due east while in...Ch. 3 - Consider the river crossing problem in Example...Ch. 3 - As you hurry to catch your flight at the local...Ch. 3 - In Problem 53, how much lime would it take you to...Ch. 3 - Predict/Calculate The pilot of an airplane wishes...Ch. 3 - A passenger walks from one side of a ferry to the...Ch. 3 - You are riding on a Jet Ski at an angle of 35...Ch. 3 - Predict/Calculate In Problem 57, suppose the Jet...Ch. 3 - Predict/Calculate Two people take identical Jet...Ch. 3 - CE Predict/Explain Consider the vectors A=(1.2m)x...Ch. 3 - CE Predict/Explain Two vectors are defined as...Ch. 3 - To be compliant with regulations the inclination...Ch. 3 - Find the direction and magnitude of the vector...Ch. 3 - Prob. 64GPCh. 3 - Prob. 65GPCh. 3 - Prob. 66GPCh. 3 - You pilot an airplane with the intent to fly 392...Ch. 3 - Find the x, y, and z components of the vector A...Ch. 3 - Observer 1 rides in a car and drops a ball from...Ch. 3 - A person riding in a subway train drops a ball...Ch. 3 - A football is thrown horizontally with an initial...Ch. 3 - As a function of time, the velocity of the...Ch. 3 - Two airplanes taxi as they approach the terminal....Ch. 3 - A shopper at the supermarket follows the path...Ch. 3 - BIO A food particle from your breakfast takes a...Ch. 3 - Initially a particle is moving at 4.10 m/s at an...Ch. 3 - A passenger on a stopped bus notices that rain is...Ch. 3 - Predict/Calculate Suppose we orient the x axis of...Ch. 3 - Predict/Calculate The Longitude Problem In 1759,...Ch. 3 - Referring to Example 3-11, (a) what heading must...Ch. 3 - Vector A points in the negative x direction....Ch. 3 - As two boats approach the marina, the velocity of...Ch. 3 - BIO Motion Camouflage in Dragonflies Dragonflies,...Ch. 3 - BIO Motion Camouflage in Dragonflies Dragonflies,...Ch. 3 - BIO Motion Camouflage in Dragonflies Dragonflies,...Ch. 3 - BIO Motion Camouflage in Dragonflies Dragonflies,...Ch. 3 - BIO Motion Camouflage in Dragonflies Dragonflies,...Ch. 3 - BIO Motion Camouflage in Dragonflies Dragonflies,...
Additional Science Textbook Solutions
Find more solutions based on key concepts
41. Humans vary in many ways from one another. Among many minor phenotypic differences are the following five i...
Genetic Analysis: An Integrated Approach (3rd Edition)
Why is it necessary to be in a pressurized cabin when flying at 30,000 feet?
Anatomy & Physiology (6th Edition)
Explain all answers clearly, using complete sentences and proper essay structure if needed. An asterisk (*) des...
Cosmic Perspective Fundamentals
Although many chimpanzees live in environments with oil palm nuts, members of only a few populations use stones...
Campbell Biology (11th Edition)
27. Consider the reaction.
Express the rate of the reaction in terms of the change in concentration of each of...
Chemistry: Structure and Properties (2nd Edition)
Use the following graph to answer questions 3 and 4. 3. Which of the lines best depicts the log phase of a ther...
Microbiology: An Introduction
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- The character Min Min from Arms was a DLC character added to Super Smash Bros. Min Min’s arms are large springs, with a spring constant of 8.53 ⋅ 10^3 N/m, which she uses to punch and fling away her opponents. Min Min pushes her spring arm against Steve, who is not moving, compressing it 1.20 m as shown in figure A. Steve has a mass of 81.6 kg. Assuming she uses only the spring to launch Steve, how fast is Steve moving when the spring is no longer compressed? As Steve goes flying away he goes over the edge of the level, as shown in figure C. What is the magnitude of Steve’s velocity when he is 2.00 m below where he started?arrow_forwardCalculate the energy needed to melt 50 g of 0°C icearrow_forwardTwo very long line charges are set up along lines that areparallel to the z-axis, so they set up Electric fields strictly in the xy plane. One goes throughthe x-axis at x = −0.40 m and has charge a density λ1 = +12.0 μC/m, the other goesthrough the x-axis at x = +0.40 m has charge density λ2 = −8.0 μC/m.A. Find the Electric field at point A: (0.40, 0.80) (distances in meters). Give answersin unit vector notation and draw a graph of the x-y plane with the E-fields you justfound.B. Find a point on the x-axis at which the total E-field is 0.arrow_forward
- In order to increase the amount of exercise in her daily routine, Tara decides to walk up the four flights of stairs to her car instead of taking the elevator. Each of the steps she takes are 18.0 cm high, and there are 12 steps per flight. (a) If Tara has a mass of 77.0 kg, what is the change in the gravitational potential energy of the Tara-Earth system (in J) when she reaches her car? ] (b) If the human body burns 1.5 Calories (6.28 x 10³ J) for each ten steps climbed, how much energy (in J) has Tara burned during her climb? ] (c) How does the energy she burned compare to the change in the gravitational potential energy of the system? Eburned Δυarrow_forwardA 4.40 kg steel ball is dropped onto a copper plate from a height of 10.0 m. If the ball leaves a dent 2.75 mm deep, what is the average force exerted by the plate on the ball during the impact? Narrow_forwardA block of mass m = 7.00 kg is released from rest from point and slides on the frictionless track shown in the figure below. (Assume h₂ = 7.80 m.) a m ha 3.20 m 2.00 m i (a) Determine the block's speed at points ® and point B ©. m/s m/s point (b) Determine the net work done by the gravitational force on the block as it moves from point J A to pointarrow_forward
- A 1.10 x 10²-g particle is released from rest at point A on the inside of a smooth hemispherical bowl of radius R R B 2R/3 (a) Calculate its gravitational potential energy at A relative to B. ] (b) Calculate its kinetic energy at B. ] (c) Calculate its speed at B. m/s (d) Calculate its potential energy at C relative to B. J (e) Calculate its kinetic energy at C. ] = 26.5 cm (figure below).arrow_forwardReport on the percentage errors (with uncertainty) between the value of 'k' from the F vs displacement plot and each of the values of 'k' from the period measurements. Please comment on the goodness of the results. Value of k = Spring constant k = 50.00 N/m Each of the values of k from period measurements: Six Measurements of time for 5 osccilations: t1 = 7.76s, t2=8.00s, t3=7.40s, t4=7.00s, t5=6.90s, t6=7.10s (t1-tavg)^2 = (7.76-7.36)^2 = 0.16%(t2-tavg)^2 =(8.00-7.36)^2 = 0.4096%(t3-tavg)^2 =(7.40-7.36)^2 = 0.0016%(t4-tavg)^2 =(7.00-7.36)^2 = 0.1296%(t5-tavg)^2 =(6.90-7.36)^2 = 0.2116%(t6-tavg)^2 =(7.10-7.36)^2 = 0.0676arrow_forwardNo chatgpt pls will upvotearrow_forward
- Based on the two periods (from hand timed and ultrasonic sensor), find the value of 'k' they suggest from the physics and from the value of the hanging mass. hand time period is 1.472s and ultrasonic sensor time period is 1.44sarrow_forwardNo chatgpt pls will upvotearrow_forwardExperimental Research Report Template Title: Paper Airplane Flight. Materials: Paper, ruler, tape Procedure: Fold paper into different airplane designs, such as dart, glider, or classic. Measure and record the distances each design flies when thrown with the same force. Discuss aerodynamics and the factors that affect flight distance. Introduction: (What do you expect to learn? What is the purpose of this lab? List any questions this experiment will answer.) Hypothesis: (Predict the outcome(s) of the experiment, must be in an “if…then format.) Materials: (What equipment and materials did you need for this experiment assignment? Describe how any equipment was connected. Also mention any special hardware or connections. List the name and amount of each item used.) Procedures: (What steps did you take to accomplish this lab assignment? Include Safety Precautions.) Data Collection: (Record the data that is required at each step of the…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
GCSE Physics - Vector Diagrams and Resultant Forces #43; Author: Cognito;https://www.youtube.com/watch?v=U8z8WFhOQ_Y;License: Standard YouTube License, CC-BY
TeachNext | CBSE Grade 10 | Maths | Heights and Distances; Author: Next Education India;https://www.youtube.com/watch?v=b_qm-1jHUO4;License: Standard Youtube License