Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
5th Edition
ISBN: 9781133422013
Author: Raymond A. Serway; John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 3, Problem 11OQ
A set of keys on the end of a string is swung steadily in a horizontal circle. In one trial, it moves at speed v in a circle of radius r. In a second trial, it moves at a higher speed 4v in a circle of radius 4r. In the second trial, how does the period of its motion compare with its period in the first trial? (a) It is the same as in the first trial. (b) It is 4 times larger. (c) It is one-fourth as large. (d) It is 16 times larger. (e) It is one-sixteenth as large.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A magnetic field forces an electron to move in a circle with radial acceleration 3.0 * 1014 m/s2. (a) What is the speed of the electron if the radius of its circular path is 15 cm? (b)What is the period of the motion?
A particle moves along a circular path having a radius of
3.13 m. At an instant when the speed of the particle is
equal to 6.29 m/s and changing at the rate of 6.02 m/s?,
what is the magnitude of the total acceleration of the
particle?
Round your answer to 1 decimal place.
A rotating fan completes 1200 revolutions every minute. Consider the tip of a blade, at a radius of 0.15 m. (a) Through what distance does the tip move in one revolution? What are (b) the tip’s speed and (c) the magnitude of its acceleration? (d) What is the period of the motion?
Chapter 3 Solutions
Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
Ch. 3.1 - Consider the following controls in an automobile...Ch. 3.3 - (i) As a projectile thrown upward moves in its...Ch. 3.3 - Rank the launch angles for the five paths in...Ch. 3.4 - Which of the following correctly describes the...Ch. 3.5 - A particle moves along a path, and its speed...Ch. 3 - In which of the following situations is the moving...Ch. 3 - A rubber stopper on the end of a string is swung...Ch. 3 - Figure OQ3.3 shows a birds-eye view of a car going...Ch. 3 - Entering his dorm room, a student tosses his book...Ch. 3 - Does a car moving around a circular track with...
Ch. 3 - An astronaut hits a golf ball on the Moon. Which...Ch. 3 - A projectile is launched on the Earth with a...Ch. 3 - A baseball is thrown from the outfield toward the...Ch. 3 - A student throws a heavy red ball horizontally...Ch. 3 - A sailor drops a wrench from the top of a...Ch. 3 - A set of keys on the end of a string is swung...Ch. 3 - Prob. 12OQCh. 3 - Prob. 1CQCh. 3 - Prob. 2CQCh. 3 - Prob. 3CQCh. 3 - Prob. 4CQCh. 3 - Prob. 5CQCh. 3 - Prob. 6CQCh. 3 - A projectile is launched at some angle to the...Ch. 3 - A motorist drives south at 20.0 m/s for 3.00 min,...Ch. 3 - Prob. 2PCh. 3 - A particle initially located at the origin has an...Ch. 3 - It is not possible to see very small objects, such...Ch. 3 - A fish swimming in a horizontal plane has velocity...Ch. 3 - At t = 0, a particle moving in the xy plane with...Ch. 3 - Mayan kings and many school sports teams are named...Ch. 3 - The small archerfish (length 20 to 25 cm) lives in...Ch. 3 - Prob. 9PCh. 3 - Prob. 10PCh. 3 - Prob. 11PCh. 3 - Prob. 12PCh. 3 - Prob. 13PCh. 3 - Prob. 14PCh. 3 - Prob. 15PCh. 3 - A firefighter, a distance d from a burning...Ch. 3 - A soccer player kicks a rock horizontally off a...Ch. 3 - Prob. 18PCh. 3 - A student stands at the edge of a cliff and throws...Ch. 3 - Prob. 20PCh. 3 - A playground is on the flat roof of a city school,...Ch. 3 - Prob. 22PCh. 3 - Prob. 23PCh. 3 - Prob. 24PCh. 3 - As their booster rockets separate, Space Shuttle...Ch. 3 - Prob. 26PCh. 3 - The astronaut orbiting the Earth in Figure P3.27...Ch. 3 - Prob. 28PCh. 3 - Prob. 29PCh. 3 - A point on a rotating turntable 20.0 cm from the...Ch. 3 - Figure P3.31 represents the total acceleration of...Ch. 3 - Prob. 32PCh. 3 - Prob. 33PCh. 3 - Prob. 34PCh. 3 - Prob. 35PCh. 3 - Prob. 36PCh. 3 - Prob. 37PCh. 3 - Prob. 38PCh. 3 - Prob. 39PCh. 3 - Prob. 40PCh. 3 - A certain light truck can go around an unbanked...Ch. 3 - A landscape architect is planning an artificial...Ch. 3 - Why is the following situation impassible? A...Ch. 3 - An astronaut on the surface of the Moon fires a...Ch. 3 - The Vomit Comet. In microgravity astronaut...Ch. 3 - A projectile is fired up an incline (incline angle...Ch. 3 - A basketball player is standing on the floor 10.0...Ch. 3 - A truck loaded with cannonball watermelons stops...Ch. 3 - A ball on the end of a string is whirled around in...Ch. 3 - An outfielder throws a baseball to his catcher in...Ch. 3 - Prob. 51PCh. 3 - A skier leaves the ramp of a ski jump with a...Ch. 3 - A World War II bomber flies horizontally over...Ch. 3 - A ball is thrown with an initial speed vi at an...Ch. 3 - Prob. 55PCh. 3 - A person standing at the top of a hemispherical...Ch. 3 - An aging coyote cannot run fast enough to catch a...Ch. 3 - Prob. 58PCh. 3 - The water in a river flows uniformly at a constant...Ch. 3 - Prob. 61P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A rotating fan completes 1180 revolutions every minute. Consider the tip of a blade, at a radius of 20.0 cm. (a) Through what distance does the tip move in one revolution? What are (b) the tip's speed and (c) the magnitude of its acceleration? (d) What is the period of the motion? (a) Number i Units (b) Number i Unitsarrow_forwardA rotating fan completes 1160 revolutions every minute. Consider the tip of a blade, at a radius of 18.0 cm. (a) Through what distance does the tip move in one revolution? What are (b) the tip's speed and (c) the magnitude of its acceleration? (d) What is the period of the motion?arrow_forwardThe CERN particle accelerator is circular with a circumference of 7.0 km. (a) What is the acceleration of the protons (m = 1.67 × 10-27 kg) that move around the accelerator at 5% of the speed of light? (The speed of light is v = 3.00 × 108 m/s.)arrow_forward
- A particle moves a round a circle with radius 4 cm, so that its speed is given by S(t) = t, at what time the angle between its velocity and acceleration vectors become 45° 1) t = 4 2) t = - 3) t = 4) t 2 2. Select one: 2. 3. pe here to searcharrow_forwardTo anticipate the dip and the hump in the road, the driver of a car applies his brakes to produce a uniform deceleration. His speed is 100kph at the bottom A of the dip and 50 kph at the top C of the hump. The length of the road from A to Cis 120m. The radius of curvature of the hump at C is 150m. The total acceleration at A is 3 m/s^2. Compute the total acceleration in m/s^2 at C. 60 m В 60 m A A) 3.69 2.66 2.73 D) 3.08 E) 2.96arrow_forwardat an instant in time a particles velocity is v = (2.00i + 1.00j) m/s, while it’s acceleration is a = -1.00i m/s^2. at what rate is the particle speeding up / slowing down and what’s the radius of the curve on the particles trajectoryarrow_forward
- A dog initially at rest, starts running inside a circular track with a 40π m circumference. The dog's acceleration tangent to its path is defined by the function at = 0.1t^2 + 0.4t. What is the total distance ran by the dog after t = 10 s?arrow_forwardThe radius of the earth is R. At what distance above the earth's surface, in terms of R , is the acceleration due to gravity = 2.5 m/s2 ? At approximately (answer) × R above the earth’s surface.arrow_forwardThe NEXT morning, you wake up in a strange room yet again, and this time you drop a ball from a height of 1.18 m above the floor. The ball hits the floor 0.147 s after your drop it. You guess that you must have been taken to an alien planet with gravity different from Earth s. What is this planet s g (that is, the magnitude of the acceleration due to gravity on this planet)?arrow_forward
- Please asaparrow_forwardPin P moves at a constant speed of 150 mm/s in a counterclockwise sense along a circular slot which has been milled in the slider block. The block moves downward at a constant speed of 100 mm/s and acceleration of -100 mm/s Determine the velocity of pin P when e = 30° Determine the acceleration of pin P when 0 = -45° 150 mm/s R= 10 cm Volock= 150 mm/s ablock = -100 mm/s?arrow_forwardA ball whirls around on the end of a string, moving in a circle at a constant speed of 3.0 m/s. If it experiences an acceleration of 3 m/s2, how long (in m) is the string, and If the string is replaced by a string 2.19 m long but the acceleration remains unchanged, what is the ball's new speed (in m/s)?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Position/Velocity/Acceleration Part 1: Definitions; Author: Professor Dave explains;https://www.youtube.com/watch?v=4dCrkp8qgLU;License: Standard YouTube License, CC-BY