Concept explainers
A truck loaded with cannonball watermelons stops suddenly to avoid running over the edge of a washed-out bridge (Fig. P3.48). The quick stop causes a number of melons to fly off the truck. One melon leaves the hood of the truck with an initial speed vi = 10.0 m/s in the horizontal direction. A cross section of the bank has the shape of the bottom half of a parabola, with its vertex at the initial location of the projected watermelon and with the equation y2 = 16x, where x and y are measured in meters. What are the x and y coordinates of the melon when it splatters on the bank?
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
- The aorta is a major artery, rising upward from the left ventricle of the heart and curving down to carry blood to the abdomen and lower half of the body. The curved artery can be approximated as a semicircular arch whose diameter is 4.3 cm. If blood flows through the aortic arch at a speed of 0.37 m/s, what is the magnitude (in m/s²) of the blood's centripetal acceleration?arrow_forwardHere is my problem: From the top of a cliff overlooking a lake, a person throws two stones, as shown in the drawing. The cliff is 15.4 m high. The two stones described have identical initial speeds of v0 = 18.0 m/s and are thrown at an angle θ = 26.7 °, one below the horizontal and one above the horizontal. What is the distance between the points where the stones strike the water? Neglect air resistance. I think I have the correct steps.. but can't seem to get the right answer. I would like someone to walk me through how to solve this.arrow_forwardThe aorta is a major artery, rising upward from the left ventricle of the heart and curving down to carry blood to the abdomen and lower half of the body. The curved artery can be approximated as a semicircular arch whose diameter is 5.9 cm. If blood flows through the aortic arch at a speed of 0.29 m/s, what is the magnitude (in m/s²) of the blood's centripetal acceleration? Number i Units D ¥ Blood from heart Blood to abdomenarrow_forward
- From the top of a cliff overlooking a lake, a person throws two stones, as shown in the drawing. The cliff is 33.7 m high. The two stones described have identical initial speeds of v0 = 13.9 m/s and are thrown at an angle θ = 21.0 °, one below the horizontal and one above the horizontal. What is the distance between the points where the stones strike the water? Neglect air resistance. I do not know where to startarrow_forwardThe aorta is a major artery, rising upward from the left ventricle of the heart and curving down to carry blood to the abdomen and lower half of the body. The curved artery can be approximated as a semicircular arch whose diameter is 4.3 cm. If blood flows through the aortic arch at a speed of 0.39 m/s, what is the magnitude (in m/s2) of the blood's centripetal acceleration? トーD- Blood from Blood to heart abdomenarrow_forwardIn my homework, I am asked to derive an equation for V0. The homework question is as follows: A howitzer fires a shell with a velocity of v0 at an angle Θ above the horizontal. The howitzer is on a plateau and the shell lands down in the plain below, a vertical distance d below the plateau and a horizontal distance L from where the howitzer is. Derive an expression for the magnitude of the initial velocity, V0, as a function of d, L, g, and Θ. Any help would be appreciated as I have worked on this problem for quite a while and I am not making progress.arrow_forward
- A truck loaded with cannonball watermelons stops suddenly to avoid running over the edge of a washed-out bridge. The quick stop causes a number of melons to fly off the truck. One melons leaves the hood of the truck with an initial speed Vi=10.0m/s in the horizontal direction. A cross section of the bank has the shape of the bottom half of a parabola, with its vertex at the initial location of the projected watermelon and with the equation y2=16x, where x and y are measured in metres. What are the x and y coordinates of the melon when it splatters on the bankarrow_forwardA projectile is shot at a hill, the base of which is 300 m away. The projectile is shot at 60° above the horizontal with an initial speed of 75 m/s. The hill can be approximated by a plane sloped at 20° to the horizontal. Relative to the coordinate system shown in the figure, the equation of this straight y = (tan 20°) x - 109. Where on the hill does the projectile land? 75 m/s 60⁰ y = (tan 20°)x - 109 -300 m- 20⁰arrow_forwardYou buy a plastic dart gun, and being a clever physics student you decide to do a quick calculation to find its maximum horizontal range. You shoot the gun straight up, and it takes 4.2 s for the dart to land back at the barrel. What is the maximum possible horizontal range that could be achieved by your gun, assuming the dart lands at the same level it started?arrow_forward
- A baseball player friend of yours wants to determine his pitching speed. You have him stand on a ledge and throw the ball horizontally from an elevation 3.0 m above the ground. The ball lands 20 m away. What is his pitching speed?arrow_forwardA horizontal rifle is fired at a bull's-eye. The muzzle speed of the bullet is 680 m/s. The gun is pointed directly at the center of the bull's-eye, but the bullet strikes the target 0.023 m below the center. What is the horizontal distance between the end of the rifle and the bull's-eye?arrow_forwardYou built a pinball machine that has a banked circular track with radius 0.34 m. The ball shooter launches the ball directly into this circular track before the ball enters into the game. You fire pin balls at a constant speed into the track and adjust the banking angle until it works. The banking angle is 21 degrees. Assume your pin ball machine is on a horizontal plane, how fast is the ball launched into the track, in m/s? Hint: I have a video on this problem about swing pendulum but the results are very similar, except a string length was given instead of path radius and tension was present instead of normal force. Assume friction is negligible.arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON