The formula of the binary compound formed from the given pairs of elements in each case is to be stated. Concept introduction: The oxidation state of an element corresponds to the group number of that element. In case of non-metals, the oxidation state can be calculated as, group number − 8 . While naming an ionic compound, the cation is named first followed by the naming of the anion. If the cation exhibits more than one oxidation state then the current oxidation state of the cation is to be mentioned. To determine: The formula of diboron trioxide.
The formula of the binary compound formed from the given pairs of elements in each case is to be stated. Concept introduction: The oxidation state of an element corresponds to the group number of that element. In case of non-metals, the oxidation state can be calculated as, group number − 8 . While naming an ionic compound, the cation is named first followed by the naming of the anion. If the cation exhibits more than one oxidation state then the current oxidation state of the cation is to be mentioned. To determine: The formula of diboron trioxide.
Solution Summary: The author explains the formula of the binary compound formed from the given pairs of elements in each case.
Interpretation: The formula of the binary compound formed from the given pairs of elements in each case is to be stated.
Concept introduction: The oxidation state of an element corresponds to the group number of that element. In case of non-metals, the oxidation state can be calculated as,
group number−8. While naming an ionic compound, the cation is named first followed by the naming of the anion. If the cation exhibits more than one oxidation state then the current oxidation state of the cation is to be mentioned.
To determine: The formula of diboron trioxide.
(b)
Interpretation Introduction
Interpretation: The formula of the binary compound formed from the given pairs of elements in each case is to be stated.
Concept introduction: The oxidation state of an element corresponds to the group number of that element. In case of non-metals, the oxidation state can be calculated as,
group number−8. While naming an ionic compound, the cation is named first followed by the naming of the anion. If the cation exhibits more than one oxidation state then the current oxidation state of the cation is to be mentioned.
To determine: The formula of of arsenic pentafluoride.
(c)
Interpretation Introduction
Interpretation: The formula of the binary compound formed from the given pairs of elements in each case is to be stated.
Concept introduction: The oxidation state of an element corresponds to the group number of that element. In case of non-metals, the oxidation state can be calculated as,
group number−8. While naming an ionic compound, the cation is named first followed by the naming of the anion. If the cation exhibits more than one oxidation state then the current oxidation state of the cation is to be mentioned.
To determine: The formula of of dinitrogen monoxide.
(d)
Interpretation Introduction
Interpretation: The formula of the binary compound formed from the given pairs of elements in each case is to be stated.
Concept introduction: The oxidation state of an element corresponds to the group number of that element. In case of non-metals, the oxidation state can be calculated as,
group number−8. While naming an ionic compound, the cation is named first followed by the naming of the anion. If the cation exhibits more than one oxidation state then the current oxidation state of the cation is to be mentioned.
9. compore the Following two Venctions IN
termy Of Ronction Rate and explan in
detail the reasoning that led to your conclusion
+He p₁₂ 11-
ㅐ 15
.. +He
H #H
H
/
H
b. Compare
the Following too reactions 14
terms of reaction Rate and explain in detail
the reasoning that led to your conclusion
Н
d-C-
tłu
Na
+2446
е
-ll +2n
"H
a.
•Write all of the possible products
For the Following ronction
А
-----
H
-
H
H
+ H₂0 H+
Н
b. in Rite the complete reaction Mechaniszn
For the Formation of each product.
·C. Suggest what Reaction conditions could
Result in each product being the major
Product of the veaction:
a. Write the product For each of the
Following reactions
H
6-836-6
레
+H₂ N
A
H
A-C-C=C-C-CH + 2 Na +2 NH3 -
H H
b. Write the reaction Mechanism For.
reaction
each