
a) CH3(CH2)29CH3, a component found in paraffin wax is a solid at room temperature while octane is a liquid.
Interpretation:
The observation that, CH3(CH2)29CH3, a component found in paraffin wax is a solid at room temperature while octane is a liquid is to be explained.
Concept introduction:
Even in non polar molecules, the attractive dispersion forces are possible, caused by temporary dipoles arising due to the costant change in electon distribution wihin the molecule. These temporary dipoles, though have a fleeting existence are constantly changing. But their cumulative effect may be strong enough to hold the molecule close together so that a substance can be a solid or liquid.
To explain:
The observation that, CH3(CH2)29CH3, a component found in paraffin wax is a solid at room temperature while octane is a liquid.
b) CH3CH2CH2OH has a higher boiling point than CH4
Interpretation:
The observation CH3CH2CH2OH has a higher boiling point than CH4.
Concept introduction:
An attractive interaction between a hydrogen bonded to an electronegative oxygen or nitrogen atom and an unshared electron pair on another oxygen or nitrogrn atom is termed as hydrogen bonding. It is a very strong dipole-dipole interaction that leads to molecular association. These molecules associated through hydrogen bonding will have a high boiling point.
To explain:
The observation CH3CH2CH2OH has a higher boiling point than CH4.
c) CH3CO2H, which is found in vinegar, will dissolve in water but not in oil- for simplicity you may assume oil is CH3(CH2)4CH3
Interpretation:
The observation that CH3CO2H, which is found in vinegar, will dissolve in water but not in oil with molecular formula CH3(CH2)4CH3.
Concept introduction:
Like dissolves like. A polar molecule will dissolve in another polar solvent. The solubility can also be explained using the formation of hydrogen bonding between the two substances.

Want to see the full answer?
Check out a sample textbook solution
Chapter 2 Solutions
Student Value Bundle: Organic Chemistry, + OWLv2 with Student Solutions Manual eBook, 4 terms (24 months) Printed Access Card (NEW!!)
- Problem 6-29 Identify the functional groups in the following molecules, and show the polarity of each: (a) CH3CH2C=N CH, CH, COCH (c) CH3CCH2COCH3 NH2 (e) OCH3 (b) (d) O Problem 6-30 Identify the following reactions as additions, eliminations, substitutions, or rearrangements: (a) CH3CH2Br + NaCN CH3CH2CN ( + NaBr) Acid -OH (+ H2O) catalyst (b) + (c) Heat NO2 Light + 02N-NO2 (+ HNO2) (d)arrow_forwardPredict the organic product of Y that is formed in the reaction below, and draw the skeletal ("line") structures of the missing organic product. Please include all steps & drawings & explanations.arrow_forwardPlease choose the best reagents to complete the following reactionarrow_forward
- Problem 6-17 Look at the following energy diagram: Energy Reaction progress (a) Is AG for the reaction positive or negative? Label it on the diagram. (b) How many steps are involved in the reaction? (c) How many transition states are there? Label them on the diagram. Problem 6-19 What is the difference between a transition state and an intermediate? Problem 6-21 Draw an energy diagram for a two-step reaction with Keq > 1. Label the overall AG°, transition states, and intermediate. Is AG° positive or negative? Problem 6-23 Draw an energy diagram for a reaction with Keq = 1. What is the value of AG° in this reaction?arrow_forwardProblem 6-37 Draw the different monochlorinated constitutional isomers you would obtain by the radical chlorination of the following compounds. (b) (c) Problem 6-39 Show the structure of the carbocation that would result when each of the following alkenes reacts with an acid, H+. (a) (b) (c)arrow_forwardPlease draw the major product of this reaction. Ignore inorganic byproducts and the carboxylic side productarrow_forward
- predict the product formed by the reaction of one mole each of cyclohex-2-en-1-one and lithium diethylcuprate. Assume a hydrolysis step follows the additionarrow_forwardPlease handwriting for questions 1 and 3arrow_forwardIs (CH3)3NHBr an acidic or basic salt? What happens when dissolved in aqueous solution? Doesn't it lose a Br-? Does it interact with the water? Please advise.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning





