Concept explainers
Interpretation:
A model of naphthalene is given. The position of multiple bonds in it is to be shown. The number of possible resonance structures for naphthalene is to be stated and their structures are to be drawn.
Concept introduction:
Hydrogen is monovalent. Carbon is tetravalent and it can form four bonds. The position of double bonds can be identified by looking for carbons in the model having only three bonds. Resonance forms differ only in the placement of their π and nonbonding valence electrons. Neither the position nor the hybridization of any atom changes from one resonance form to another. The shift of electrons to give another resonance structure is represented by a curved arrow.
To determine:
The position of multiple bonds in the given model of naphthalene, C10H8. The number and structures of possible resonance structures for naphthalene are to be drawn
Answer to Problem 20VC
The positions of multiple bonds in naphthalene are shown in the structure given below.
Naphthalene has three resonance forms as shown.
Explanation of Solution
In the model of naphthalene shown all the carbons have formed only three bonds and all the carbons require one more bond to satisfy their fourth valence. This fourth valence of each carbon can be satisfied by placing five double bonds between adjacent carbons as shown.
By shifting the position of double bonds, in total, three resonance structures can be drawn.
The positions of multiple bonds in naphthalene are shown in the structure given below.
Naphthalene has three resonance forms as shown.
Want to see more full solutions like this?
Chapter 2 Solutions
Student Value Bundle: Organic Chemistry, + OWLv2 with Student Solutions Manual eBook, 4 terms (24 months) Printed Access Card (NEW!!)
- Follow the curved arrows to draw a second resonance structure for each species. Explain and steps for individual understanding.arrow_forwardDraw all reasonable resonance structures for the following cation. Then draw the resonance hybrid. Provide steps and explanationarrow_forwardHow are the molecules or ions in each pair related? Classify them as resonance structures, isomers, or neither.arrow_forward
- How do I solve this Alkyne synthesis homework problem for my Organic Chemistry II class? I have to provide both the intermediate products and the reagents used.arrow_forwardSubstance X is known to exist at 1 atm in the solid, liquid, or vapor phase, depending on the temperature. Additionally, the values of these other properties of X have been determined: melting point enthalpy of fusion 90. °C 8.00 kJ/mol boiling point 130. °C enthalpy of vaporization 44.00 kJ/mol density 2.80 g/cm³ (solid) 36. J.K mol (solid) 2.50 g/mL (liquid) heat capacity 32. J.Kmol (liquid) 48. J.Kmol (vapor) You may also assume X behaves as an ideal gas in the vapor phase. Ex Suppose a small sample of X at 50 °C is put into an evacuated flask and heated at a constant rate until 15.0 kJ/mol of heat has been added to the sample. Graph the temperature of the sample that would be observed during this experiment. o0o 150- 140 130- 120- 110- 100- G Ar ?arrow_forwardMechanism. Provide the mechanism for the reaction below. You must include all arrows, intermediates, and formal charges. If drawing a Sigma complex, draw all major resonance forms. The ChemDraw template of this document is available on Carmen. Br FeBr3 Brarrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningOrganic ChemistryChemistryISBN:9781305580350Author:William H. Brown, Brent L. Iverson, Eric Anslyn, Christopher S. FootePublisher:Cengage Learning