College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 29, Problem 7P
(a)
To determine
The maximum coulomb force.
(b)
To determine
The acceleration of alpha particle.
(c)
To determine
The potential energy of alpha particle.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An alpha particle (Z = 2, mass = 6.64 × 10−27 kg) approaches to within 1.00 × 10-14 m of a carbon nucleus (Z 5 6). What are (a) the maximum Coulomb force on the alpha particle, (b) the acceleration of the alpha particle at this time, and (c) the potential energy of the alpha particle at the same time?
An alpha particle (Z = 2, mass = 6.64 x 10-27 kg) approaches to within 1.00 x 10-14 m of a carbon nucleus (Z = 6). What are (a) the maximum Coulomb force on the alpha particle, (b) the acceleration of the alpha particle at this time, and (c) the potential energy of the alpha particle at the same time?
A carbon nucleus and an iron nucleus are initially located 5.22 nm apart from one another. How much work would it take to move the carbon nucleus to a new distance of 2.27 nm from the iron nucleus?
Chapter 29 Solutions
College Physics
Ch. 29.3 - Prob. 29.1QQCh. 29.3 - What fraction of a radioactive sample has decayed...Ch. 29.3 - Prob. 29.3QQCh. 29.6 - Prob. 29.4QQCh. 29.6 - Prob. 29.5QQCh. 29 - Prob. 1CQCh. 29 - Prob. 2CQCh. 29 - Prob. 3CQCh. 29 - Prob. 4CQCh. 29 - Prob. 5CQ
Ch. 29 - Prob. 6CQCh. 29 - Prob. 7CQCh. 29 - A radioactive sample has an activity R. For each...Ch. 29 - Prob. 9CQCh. 29 - Prob. 10CQCh. 29 - Prob. 11CQCh. 29 - Prob. 12CQCh. 29 - Prob. 13CQCh. 29 - Prob. 1PCh. 29 - Prob. 2PCh. 29 - Prob. 3PCh. 29 - Prob. 4PCh. 29 - Using 2.3 1017 kg/m3 as the density of nuclear...Ch. 29 - Prob. 6PCh. 29 - Prob. 7PCh. 29 - Prob. 8PCh. 29 - Prob. 9PCh. 29 - Prob. 10PCh. 29 - Prob. 11PCh. 29 - Prob. 12PCh. 29 - Prob. 13PCh. 29 - Prob. 14PCh. 29 - Two nuclei having the same mass number are known...Ch. 29 - Prob. 16PCh. 29 - Radon gas has a half-life of 3.83 days. If 3.00 g...Ch. 29 - Prob. 18PCh. 29 - Prob. 19PCh. 29 - Prob. 20PCh. 29 - Prob. 21PCh. 29 - Prob. 22PCh. 29 - Prob. 23PCh. 29 - Prob. 24PCh. 29 - Prob. 25PCh. 29 - Prob. 26PCh. 29 - Prob. 27PCh. 29 - Prob. 28PCh. 29 - The Mass of 56Fe is 55.934 9 u, and the mass of...Ch. 29 - Prob. 30PCh. 29 - Prob. 31PCh. 29 - Prob. 32PCh. 29 - Prob. 33PCh. 29 - Prob. 34PCh. 29 - Prob. 35PCh. 29 - Prob. 36PCh. 29 - Prob. 37PCh. 29 - Prob. 38PCh. 29 - Prob. 39PCh. 29 - Prob. 40PCh. 29 - Prob. 41PCh. 29 - Prob. 42PCh. 29 - Prob. 43PCh. 29 - Prob. 44PCh. 29 - Prob. 45PCh. 29 - Prob. 46PCh. 29 - Prob. 47PCh. 29 - Prob. 48PCh. 29 - Prob. 49PCh. 29 - Prob. 50PCh. 29 - Prob. 51APCh. 29 - Prob. 52APCh. 29 - Prob. 53APCh. 29 - Prob. 54APCh. 29 - Prob. 55APCh. 29 - Prob. 56APCh. 29 - Prob. 57APCh. 29 - Prob. 58APCh. 29 - Prob. 59APCh. 29 - Prob. 60APCh. 29 - Prob. 61APCh. 29 - Prob. 62AP
Knowledge Booster
Similar questions
- The protons in a nucleus are approximately 2 ✕ 10−15 m apart. Consider the case where the protons are a distance d = 1.85 ✕ 10−15 m apart. Calculate the magnitude of the electric force (in N) between two protons at this distance.arrow_forwardc) The equation below describes the disintegration of a polonium nucleus into a lead nucleus and an alpha-particle. During the reaction energy Q is released. 210Po → He +²02Pb+Q 84 82 Calculate the loss of energy during the reaction. The masses in the atomic mass unit u are as follows: 210 206 Po= 209.98287 u, Pb = 205.97446 u and He = 4.002604 u. 84 82 You may assume that 1u is equivalent to 931 MeV. d) The lead nucleus recoils in the opposite direction to the emitted alpha particle conserving momentum. Hence calculate: i) The ratio of the recoil nucleus and alpha particle velocities ii) The kinetic energy distribution of these products.arrow_forwardNow you have a nucleus with 17 protons at x = 5.8 Angstroms on the x-axis. How much work would it take to bring in ANOTHER nucleus with 14 protons from 1 m away and place it at y = 8.0 Angstroms on the y-axis?arrow_forward
- What is the magnitude of the repulsive electrostatic force between two protons in a nucleus? Consider the distance between the centers of the protons to be 3.5 x 10^-13 m.If these protons were released from rest, Calculate the magnitude of their initial acceleration?arrow_forwardA proton moving in the positive x direction at 4.3 Mm/s collides with a nucleus. The collision lasts 0.12 fs, and the average impulsive force is 42 i + 17 j micro - Newton. A) Find the velocity of the proton after the collision. B) Through what angle has the proton's motion been deflected?arrow_forwardCertain stars are thought to collapse at the end of their lives, combining their protons and electrons to form a neutron star. Such a star could be thought of as a giant atomic nucleus. If a star with a mass equal to that of the sun (of mass 1.99 × 10°0 kg) were to collapse into neutrons, what would be the radius of the star? Answer in units of m.arrow_forward
- In a neutron star, gravity causes the electrons to combine with protons to form neutrons. A typical neutron star has a mass half that of the sun, compressed into a sphere of radius 20 km. If such a neutron star contains 6.0 × 1056 neutrons, calculate its density in grams per cubic centimeter.Compare this with the density inside a 232Th nucleus, in which 142 neutrons and 90 protons occupy a sphere of radius 9.1 × 10-13 cm. Take the mass of a neutron to be 1.675 × 10-24 g and that of a proton to be 1.673 × 10-24 g.arrow_forwardany speed up to 8.08 m/s (а) 8.33 (b) 9.15 N toward the nucleus m/s inwardarrow_forwardProtons enter a region of electric field where the potential difference between where the protons enter and exit is +5×106 volts (5 MV). Assuming the initial energy of the protons was negligible, how much energy does the proton gain? What if we had a fully ionized carbon-12 nucleus instead?arrow_forward
- The nuclei of both 3H and 3He have radii of 1.5 ×10−15 m. With what minimum speedmust the electron be ejected if it is to escape from the nucleus and not fall back?arrow_forwardA 212^Bi (bismuth) nucleus undergoes alpha decay, resulting in a 208^Tl (thallium) nucleus and a 4^He (helium) nucleus as per the following reaction: 212^Bi →208^ Tl + 4 ^He The masses of each nucleus is listed in the table below. Given that the bismuth atom was at rest before the reaction, if the resulting thallium nucleus is traveling 3.3 × 10^5 m/s, how fast is the helium nucleus traveling?arrow_forwardAll stars have to be electrically charge neutral, since the gravitational force is about 1036 times weaker than the electromagnetic force. Calculate what is the maximum ratio of charged particle per nucleon Z/A you can have in a star, so it does not expel a proton from the surface. In other words, the gravitational force between a proton and the remaining star must be larger than the Coulomb's force. Use that the gravitational mass of the star M is less than the baryonic mass mpA.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning