College Physics
College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 29, Problem 26P

(a)

To determine

The number of C137 sample.

(a)

Expert Solution
Check Mark

Answer to Problem 26P

The number of C137 sample is 3.54×109 nuclei.

Explanation of Solution

Given info: Time elapsed is 1730 days. Half-life of C137 is 1.10×104days . Half-life of C134 is 734 days. The combined activity of both the samples is 11.0 Bq.

Formula to calculate the combined activity is,

R=(N0t1/2137)exp[(tt1/2137)ln2]+(N0t1/2134)exp[(tt1/2134)ln2]       (I)

  • t1/2137 is the half-life of C137 .
  • t1/2134 is the half-life of C134 .
  • N0 is the initial amount of sample.
  • t is the time elapsed.

From Equation (I), the initial amount of sample is,

N0=R(1t1/2137)exp[(tt1/2137)ln2]+(1t1/2134)exp[(tt1/2134)ln2]       (II)

Formula to calculate the number of C137 sample is,

N=N0exp[(tt1/2137)ln2]       (III)

Substitute Equation (II) in (III).

N=Rexp[(tt1/2137)ln2](1t1/2137)exp[(tt1/2137)ln2]+(1t1/2134)exp[(tt1/2134)ln2]

Substitute 11.0 Bq for R, 1.10×104days for t1/2137 , 734 days for t1/2134 and 1730 days for t in the above equation to get N.

N=(11.0Bq)exp[(1730days1.10×104days)ln2](11.10×104days)exp[(1730days1.10×104days)ln2]+(1734days)exp[(1730days734days)ln2]=3.54×109

Conclusion:

The number of C137 sample is 3.54×109 nuclei.

(b)

To determine

The number of C134 sample.

(b)

Expert Solution
Check Mark

Answer to Problem 26P

The number of C134 sample is 7.72×108 nuclei.

Explanation of Solution

Given info: Time elapsed is 1730 days. Half-life of C137 is 1.10×104days . Half-life of C134 is 734 days. The combined activity of both the samples is 11.0 Bq.

From Equation (II) of (a),

N0=R(1t1/2137)exp[(tt1/2137)ln2]+(1t1/2134)exp[(tt1/2134)ln2]

Formula to calculate the number of C134 sample is,

N=N0exp[(tt1/2134)ln2]       (IV)

Substitute Equation (II) in (IV).

N=Rexp[(tt1/2134)ln2](1t1/2137)exp[(tt1/2137)ln2]+(1t1/2134)exp[(tt1/2134)ln2]

Substitute 11.0 Bq for R, 1.10×104days for t1/2137 , 734 days for t1/2134 and 1730 days for t in the above equation to get N.

N=(11.0Bq)exp[(1730days734days)ln2](11.10×104days)exp[(1730days1.10×104days)ln2]+(1734days)exp[(1730days734days)ln2]=7.72×108

Conclusion:

The number of C134 sample is 7.72×108 nuclei.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!

Chapter 29 Solutions

College Physics

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College