Concept explainers
Classify each of die following statements as a characteristic (a) of electric forces only, (b) of magnetic forces only, (c) of both electric and magnetic forces, or (d) of neither electric nor magnetic forces. (i) The force is proportional to the magnitude of the field exerting it. (ii) The force is proportional to the magnitude of the charge of the object on which the force is exerted. (iii) The force exerted on a negatively charged object is opposite in direction to the force on a positive charge. (iv) The force exerted on a stationary charged object is nonzero. (v) The force exerted on a moving charged object is zero. (vi) The force exerted on a charged object is proportional to its speed. (vii) The force exerted on a charged object cannot alter the object’s speed. (viii) The magnitude of the force depends on the charged object’s direction of motion.
(i)
The forces which are proportional to the magnitude of their respective fields.
Answer to Problem 29.8OQ
Option(c) of both electric and magnetic forces.
Explanation of Solution
The expression for electrical force is,
Here,
Increase the electric field, the force on the charge will also increase proportional to it.
The expression for magnetic force is,
Here,
Increase the magnetic field with same speed on same charge in the same direction, the force on the charge will also increase proportional to it.
Conclusion:
The electric force is proportional to the electric field and the magnetic force is proportional to the magnetic field. Both electric and magnetic forces are proportional to their respective fields but option (a) includes only electric force. Thus, option (a) is incorrect.
The magnetic force is proportional to the magnetic field and the electric force is proportional to the electric field. Both the forces are proportional to their respective fields but option (b) includes only magnetic force. Thus, option (b) is incorrect.
Both the forces are proportional to their respective fields. Thus option (c) is correct.
The exerted forces in magnetic field as well as electric field are proportional to their respective field that contradicts the option (d). Thus, option (d) is incorrect.
(ii)
The forces proportional to the magnitude of the charge.
Answer to Problem 29.8OQ
Option (c) both electric and magnetic forces
Explanation of Solution
The expression for electrical force is,
Increase the magnitude of charge, the force on the charge will also increase proportional to it.
The expression for magnetic force is
Increase the magnitude of charge with same speed and in the same field, in the same direction, the force on the charge will also increase proportional to it.
Conclusion:
The electric force is proportional to the magnitude of charge and the magnetic force is also proportional to magnitude of charge. Both electric and magnetic forces are proportional to the magnitude of charge but option (a) includes only electric force. Thus, option (a) is incorrect.
The magnetic force is proportional to the magnitude of charge and also the electric force is proportional to magnitude of charge .Both the forces are proportional to the magnitude of charge but option (b) only magnetic force. Thus, option (b) is incorrect.
Both the forces are proportional to the magnitude of charge. Thus option (c) is correct.
The exerted forces in magnetic field as well as electric field are proportional to the magnitude of charge that contradicts the option (d). Thus, option (d) is incorrect.
(iii)
The forces which exert force on a negatively charged particle in opposite direction to the force on a positively charged particle.
Answer to Problem 29.8OQ
Option (c) both electric and magnetic forces.
Explanation of Solution
The electric force on a positively charged particle is
Here
The electric force on a negatively charged particle is
Here
From equation (1) and equation (2),
Thus, electric force on the same magnitude of electric charge of opposite nature are equal but opposite in direction.
The magnetic force on a positively charged particle is,
Here
The magnetic force on a negatively charged particle is,
Here,
From equation (3) and (4),
Thus, magnetic force on the same magnitude of electric charge moving with same speed but of opposite nature are equal but opposite in direction.
Conclusion:
Both magnetic force and electric force exert force on negative charge in the opposite direction to the force on positive charge but option (a) includes only electric force. Thus, option (a) is incorrect.
Both magnetic force and electric force exert force on negative charge in the opposite direction to the force on positive charge but option (b) includes only magnetic force. Thus option (b) is incorrect.
Both magnetic force and electric force exert force on negative charge in the opposite direction to the force on positive charge. Thus, option (c) is correct.
Both the forces exert force on negative charge in the opposite direction to the force on positive charge that contradicts the option (d). Thus, option (d) is incorrect.
(iv)
The forces which are non-zero on a stationary object.
Answer to Problem 29.8OQ
Option (a) only electric forces exert non-zero force on stationary object.
Explanation of Solution
The expression for electrical force is,
There is no relation between motion of charged object and electric field because electric field exists for all orientations of charges, whether it is stationary or in motion.
The expression for magnetic force is,
Magnetic force exists only when charges are in motion. Thus for stationary charges the magnetic force is not valid.
Conclusion:
Electrical force is valid for any particle that has charge; it is fundamental force in nature. Thus, option (a) is correct.
Magnetic field is existence for any charged particle in motion. Stationary charged particles have zero magnetic force. Thus option (b) is incorrect.
For a stationary charge only electric force is non-zero and magnetic force is zero that contradicts the option (c). Thus, option (c) is incorrect.
For a stationary charge only electric force is non-zero and magnetic field is zero which is contradictory to the option (d). Thus, option (d) is incorrect.
(v)
The forces which are zero on a moving charge.
Answer to Problem 29.8OQ
Option (d) neither electric nor magnetic force.
Explanation of Solution
The expression for electrical force is,
There is no relation between motion of charged object and electric field because electric field exists for all orientations of charges, whether it is stationary or in motion. If electric field exists then there is a non-zero force on the charged object.
The expression for magnetic force is,
Magnetic force exists only when charges are in motion. Thus for moving charges the magnetic force may be zero if the charge moves either in the direction of the magnetic field or opposite to it.
Conclusion:
Electrical force is valid for any particle that has charge; it is fundamental force in nature. Thus, option (a) is incorrect.
Magnetic field is existence for any charged object in motion. Moving charged objects may have zero magnetic force if the charged object moves along or against the direction of the magnetic field. Thus, option (b) is incorrect.
For a moving charge, electric force is non-zero but the magnetic force may or may not be zero that contradicts the option (c). Thus, option (c) is incorrect.
For a moving charge only electric force is non-zero and magnetic force may or may not be zero. Thus option (d) is correct.
(vi)
The forces proportional to the speed of the charged object.
Answer to Problem 29.8OQ
option (b) magnetic forces only.
Explanation of Solution
The expression for electrical force is,
There is no relation between motion of charged object and the electric field force.
The expression for magnetic force is,
The magnetic force exists only if there is motion and is directly proportional to the speed of the charged particle.
Conclusion:
The electric force exerted on the charged object has no relation with its motion. Thus option (a) is incorrect.
The magnetic force is exerted on a body in motion and is directly proportional to the speed of the object. Thus option (b) is correct.
The electric force exerted on the charged object has no relation with its motion while magnetic force on it is proportional to the speed of the object. Thus, option (c) is incorrect.
The electric force exerted on the charged object has no relation with its motion while magnetic force on it is proportional to the speed of the object that contradicts the option (d). Thus, option (d) is incorrect.
(vii)
The forces on the charged object which can alter its speed.
Answer to Problem 29.8OQ
Option (b) magnetic forces only.
Explanation of Solution
The expression for electrical force is,
There is no relation between motion of charged object and the electric field force.
The expression for magnetic force is,
The magnetic force acts on the perpendicular direction of the motion of the object because it is along the direction of cross product vector of
Conclusion:
There is no relation of motion of the charged object and the electric field force. Thus option (a) is incorrect.
The magnetic force has no change in the speed but it does change the direction of motion of the object. Thus option (b) is correct.
Electric forces have no relation with speed of the charged body while magnetic forces cannot alter speed of the object but it can change its direction of motion. Thus option (c) is incorrect.
Electric forces are independent of any motion of the charged object while magnetic forces can change only the direction of motion of the object. Thus option (d) is incorrect
(viii)
The force whose magnitude depends on the charged object’s direction of motion.
Answer to Problem 29.8OQ
Option (b) magnetic forces only
Explanation of Solution
The expression for electrical force is
There is no relation between motion of charged object and the electric field force.
The expression for magnetic force is
The value of
Conclusion:
The electric field has no relation with the motion of the charged object Thus option (a) is incorrect.
The variation in direction of motion varies the value of
The direction of motion of the charged object affects only the magnetic force but not electric force. Thus option (c) is incorrect as it considers both the forces.
Only the magnetic force is affected by variation in direction of motion of the charged object but not electric force. Thus option (d) is incorrect as it considers neither of the forces.
Want to see more full solutions like this?
Chapter 29 Solutions
Physics for Scientists and Engineers, Technology Update (No access codes included)
- Suppose a toy boat moves in a pool at at a speed given by v=1.0 meter per second at t=0, and that the boat is subject to viscous damping. The damping on the boat causes the rate of speed loss to be given by the expression dv/dt=-2v. How fast will the boat be traveling after 1 second? 3 seconds? 10 seconds? Use separation of variables to solve this.arrow_forwardWhat functional form do you expect to describe the motion of a vibrating membrane without damping and why?arrow_forwardIf speed is tripled, how much larger will air drag become for an object? Show the math.arrow_forward
- What does it tell us about factors on which air drag depends if it is proportional to speed squared?arrow_forwardWhat is the net charge on a sphere that has the following? x (a) 5.75 × 106 electrons and 8.49 × 106 protons 4.39e-13 What is the charge of an electron? What is the charge of a proton? C (b) 200 electrons and 109 protons 1.60e-10 What is the charge of an electron? What is the charge of a proton? Carrow_forwardA spider begins to spin a web by first hanging from a ceiling by his fine, silk fiber. He has a mass of 0.025 kg and a charge of 3.5 μC. A second spider with a charge of 4.2 μC rests in her own web exactly 2.1 m vertically below the first spider. (a) What is the magnitude of the electric field due to the charge on the second spider at the position of the first spider? 8.57e3 N/C (b) What is the tension in the silk fiber above the first spider? 0.125 How does the electric field relate to the force? How do you calculate the net force? Narrow_forward
- Point charges of 6.50 μC and -2.50 μC are placed 0.300 m apart. (Assume the negative charge is located to the right of the positive charge. Include the sign of the value in your answers.) (a) Where can a third charge be placed so that the net force on it is zero? 0.49 m to the right of the -2.50 μC charge (b) What if both charges are positive? 0.185 xm to the right of the 2.50 μC chargearrow_forwardc = ad Find the electric field at the location of q, in the figure below, given that q₁ = 9₁ = 9₁ = +4.60 nC, q=-1.00 nC, and the square is 20.0 cm on a side. (The +x axis is directed to the right.) magnitude direction N/C ° counterclockwise from the +x-axis 9a % 9 9barrow_forwardPlastic beads can often carry a small charge and therefore can generate electric fields. Three beads are oriented such that 92 is between q₁ and 93. The sum of the charge on 9₁ and 92 is 9₁ + 92 = −2.9 µС, and the net charge of the system of all three beads is zero. E field lines 93 92 What charge does each bead carry? 91 92 -1.45 What is the net charge of the system? What charges have to be equal? μC 2.9 ✓ What is the net charge of the system? What charges have to be equal? μC 93 2.9 μεarrow_forward
- A spider begins to spin a web by first hanging from a ceiling by his fine, silk fiber. He has a mass of 0.025 kg and a charge of 3.5 μC. A second spider with a charge of 4.2 μC rests in her own web exactly 2.1 m vertically below the first spider. (a) What is the magnitude of the electric field due to the charge on the second spider at the position of the first spider? 8.57e3 N/C (b) What is the tension in the silk fiber above the first spider? 0.275 How does the electric field relate to the force? How do you calculate the net force? Narrow_forwardPlastic beads can often carry a small charge and therefore can generate electric fields. Three beads are oriented such that 92 is between 91 system of all three beads is zero. E field lines 91 92 93 X What charge does each bead carry? 91 = 92 = ?2.9 0 μC × What is the net charge of the system? What charges have to be equal? μC 93 2.9 με and 93. The sum of the charge on 91 and 92 is 91 +92 = -2.9 μC, and the net charge of thearrow_forwardAn electron has an initial speed of 5.26 x 100 m/s in a uniform 5.73 x 105 N/C strength electric field. The field accelerates the electron in the direction opposite to its initial velocity. (a) What is the direction of the electric field? opposite direction to the electron's initial velocity same direction as the electron's initial velocity not enough information to decide × What is the direction of the force on the electron? How does it compare to the direction of the electric field, considering the sign of the electron's charge? (b) How far does the electron travel before coming to rest? 0.0781 × What kinematic equation is relevant here? How do you calculate the force due to the electric field? m (c) How long does it take the electron to come to rest? 5.27e8 What is the final velocity of the electron? s (d) What is the electron's speed when it returns to its starting point? 5.26e6 m/sarrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning