Manufacturing Engineering & Technology
Manufacturing Engineering & Technology
7th Edition
ISBN: 9780133128741
Author: Serope Kalpakjian, Steven Schmid
Publisher: Prentice Hall
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 29, Problem 1RQ

Define MEMS, SIMPLE, SCREAM, and HEXSIL.

Expert Solution & Answer
Check Mark
To determine

Define MEMS, SIMPLE, SCREAM, and HEXSIL.

Explanation of Solution

MEMS:-

Micro-Electro-Mechanical Systems, or MEMS, is a technology that in its most mutual form can be separate as abridged mechanical and electro-mechanical elements that are completed using the method of micro-fabrication. The acute physical dimensions of MEMS devices can differ from fine below one micron on the lesser end of the dimensional spectrum, all the way to some millimeters.

SIMPLE:-

A supplementary to SCREAM is SIMPLE (silicon micromachining by single step plasma etching), as showed. This technique uses a chlorine gas-based plasma-etching process that machines p-doped or lightly doped silicon anisotropically, but intensely n-doped silicon isotropically.

SCREAM:-

Other method for creating very deep MEMS structures is the SCREAM(single-crystal silicon reactive etching and metallization) process, depicted in. In this technique, typical lithography and etching processes form trenches 10−50 μm (400−2000 μin.) deep, which are then sheltered by a layer of chemically vapor dropped silicon oxide.

HEXSIL

This process, revealed, links hexagonal honeycomb structures, silicon micromachining, and thin-film deposition to sort high-aspect-ratio, self-supporting structures. HEXSIL can make tall structures with the definition of shape those rivals of structures made by LIGA. In HEXSIL, a deep trench is first made in single-crystal silicon by dry etching, followed by shallow wet etching to create the evener trench walls.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Problem 3: The inertia matrix can be written in dyadic form which is particularly useful when inertia information is required in various vector bases. On the next page is a right rectangular pyramid of total mass m. Note the location of point Q. (a) Determine the inertia dyadic for the pyramid P, relative to point Q, i.e., 7%, for unit vectors ₁₁, 2, 3.
Can you solve for v? Also, what is A x u
The external loads on the element shown below at the free end are F = 1.75 kN, P = 9.0 kN, and T = 72 Nm. The tube's outer diameter is 50 mm and the inner diameter is 45 mm. Given: A(the cross-sectional area) is 3.73 cm², Moment inertial I is 10.55 cm4, and J polar moment inertial is 21.1 cm4. Determine the following. (1) The critical element(s) of the bar. (2) Show the state of stress on a stress element for each critical element. -120 mm- F

Chapter 29 Solutions

Manufacturing Engineering & Technology

Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Precision Machining Technology (MindTap Course Li...
Mechanical Engineering
ISBN:9781285444543
Author:Peter J. Hoffman, Eric S. Hopewell, Brian Janes
Publisher:Cengage Learning
Material Properties 101; Author: Real Engineering;https://www.youtube.com/watch?v=BHZALtqAjeM;License: Standard YouTube License, CC-BY