
Electrical Wiring Residential
18th Edition
ISBN: 9781285170954
Author: Ray C. Mullin, Phil Simmons
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 29, Problem 1R
To determine
State what minimum-size service is needed for a single family dwelling and also provide the NEC Code that states it.
Expert Solution & Answer

Answer to Problem 1R
The required minimum-size main service is 100 amperes and the Code is NEC 230.79(C).
Explanation of Solution
Discussion:
The National Electrical Code committee develops NEC – the standard electrical code. The main objective for the origin of the code is to protect and safeguard the person and elements from electrical hazards.
For a one family dwelling, according to National Electric Code NEC 230.79(C), the required minimum-size service is 100 amperes.
Conclusion:
Thus, the required minimum-size main service is 100 amperes and the Code is NEC 230.79(C).
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
For the following graphical figure, write the function x(n) and h(n) in:
1. sequential vector
2. functional representation
3. Tabular
2
h0)
32 If signal x(n)-(32130 104032)], describe this signal using:
1. Graphical representation
2. Tabular representation
3. Write its expression
4. Write it as equation
5. Draw it as y(n) - x(n) u(n-3)
6. Sketch it if it is bounded at -2
For the following Split-phase Manchester waveform, extract the original binary data. Then
draw the AMI code for that data.
0
DIT FFT sequence of algorithm x=0,1,2,3,4,5,6,7 using in butterfly structure
Chapter 29 Solutions
Electrical Wiring Residential
Ch. 29 - Prob. 1RCh. 29 - a. What is the unit load per ft2 for the general...Ch. 29 - a. What is the ampere rating of the circuits that...Ch. 29 - Why is the air-conditioning load for this...Ch. 29 - What demand factor may be applied when four or...Ch. 29 - What load may be used for an electric range rated...Ch. 29 - What is the calculated load for an electric range...Ch. 29 - What is the calculated load when fixed electric...Ch. 29 - On what basis is the neutral conductor of a...Ch. 29 - Why is it permissible to omit an electric space...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Cari induktasi saluran transmisi terhadapku GMDarrow_forwardA wattmeter is connected with the positive lead on phase “a” of a three-phase system. The negative lead is connected to phase “b”. A separate wattmeter has the positive lead connected to phase “c”. The negative lead of this wattmeter is connected also to phase “b”. If the input voltage is 208 volts line-to-line, the phase sequence is “abc” and the load is 1200 ohm resistors connected in “Y”, what is the expected reading of each of the wattmeters? (Hint: draw a phasor diagram)arrow_forwarda b 1 ΚΩΣ 56002 82092 470Ω Rab, Rbc, Rde d e O 470Ω Σ 5 Ω 25$ 5602 3 4 Ωarrow_forward
- MY code is experiencing a problem as I want to show both the magnitude ratio on low pass, high pass, and bandbass based on passive filters: Code: % Define frequency range for the plot f = logspace(1, 5, 500); % Frequency range from 10 Hz to 100 kHz w = 2*pi*f; % Angular frequency % Parameters for the filters (you can modify these) R = 1e3; % Resistance in ohms (1 kOhm) C = 1e-6; % Capacitance in farads (1 uF) L = 10e-3; % Inductance in henries (10 mH) % Transfer function for Low-pass filter: H_low = 1 / (1 + jωRC) H_low = 1 ./ (1 + 1i*w*R*C); % Transfer function for High-pass filter: H_high = jωRC / (1 + jωRC) H_high = 1i*w*R*C ./ (1 + 1i*w*R*C); % Transfer function for Band-pass filter: H_band = jωRC / (1 + jωL/R + jωRC) H_band = 1i*w*R*C ./ (1 + 1i*w*L/R + 1i*w*R*C); % Plot magnitude responses figure; subplot(3,1,1); semilogx(f, 20*log10(abs(H_low))); % Low-pass filter title('Magnitude Response of Low-pass Filter'); xlabel('Frequency (Hz)'); ylabel('Magnitude (dB)'); grid…arrow_forward*10. For the network of Fig. 7.83, determine: a. Ip. b. VDS. c. VD. d. Vs. 20 V 2.2 ΚΩ ID -4 V IDSS = 4.5 mA VDS Vp = -5V 0.68 ΚΩarrow_forward4. a. Determine VDs for VGS = 0 V and ID = 6 mA using the characteristics of Fig. 6.11. b. Using the results of part (a), calculate the resistance of the JFET for the region ID = 0 to 6 mA for VGS = 0 V. c. Determine VDs for VGS = -1 V and ID = 3 mA. d. Using the results of part (c), calculate the resistance of the JFET for the region ID = 0 to 3 mA for VGS = -1 V. e. Determine VDs for VGS = -2 V and ID = 1.5 mA. f. Using the results of part (e), calculate the resistance of the JFET for the region ID 1.5 mA for VGS = -2 V. g. Defining the result of part (b) as ro, determine the resistance for VGS Eq. (6.1) and compare with the results of part (d). = 0 to = -1 V using h. Repeat part (g) for VGS = -2 V using the same equation, and compare the results with part (f). i. Based on the results of parts (g) and (h), does Eq. (6.1) appear to be a valid approximation?arrow_forward
- Q1. Consider the unity feedback control system whose open-loop transfer function is: G(s): = 40(S+2) s(s+3)(s+1)(s + 10) ELECTRIC Ziegler-Nichols, By using second method of Ziegler- Nichols, calculate the PID, PI-D and I-PD parameters and make tuning for this parameters to get accepting response for the following system, then comp controllers? PARTME then compare your results for all types GINEARIarrow_forwardI need solution by hand plzarrow_forwardPlease solve this circuit using Laplace Transform, show proper solution.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- EBK ELECTRICAL WIRING RESIDENTIALElectrical EngineeringISBN:9781337516549Author:SimmonsPublisher:CENGAGE LEARNING - CONSIGNMENT

EBK ELECTRICAL WIRING RESIDENTIAL
Electrical Engineering
ISBN:9781337516549
Author:Simmons
Publisher:CENGAGE LEARNING - CONSIGNMENT