Concept explainers
The circumstances in which a spatially uniform magnetic field cannot exert a magnetic force on a particle.
Answer to Problem 1OQ
Option (c) The particle moves parallel to the magnetic field and option (e) the particle is at rest.
Explanation of Solution
A uniform magnetic field cannot exert a magnetic force only when the particle is not charged and moving at an angle of
Conclusion:
As a spatially uniform magnetic field cannot exert a magnetic force on the particle moving parallel to the magnetic field. Therefore, option (c) is correct.
As a spatially uniform magnetic field cannot exert a magnetic force on the particle which is at rest. Therefore, option (e) is correct.
As a spatially uniform magnetic field can exert a magnetic force on the particle which is charged. Therefore, option (a) is incorrect.
As a spatially uniform magnetic field can exert a magnetic force on the particle which moves perpendicular to the magnetic field. Therefore, option (b) is incorrect.
A spatially uniform magnetic field can exert a magnetic force on the particle when the magnitude of the magnetic field changes. Therefore, option (d) is incorrect.
Want to see more full solutions like this?
Chapter 29 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
- A charged particle is traveling through a uniform magnetic field. Which of the following statements are true of the magnetic field? There may be more than one correct statement. (a) It exerts a force on the particle parallel to the field. (b) It exerts a force on the particle along the direction of its motion. (c) It increases the kinetic energy of the particle. (d) It exerts a force that is perpendicular to the direction of motion. (e) It does not change the magnitude of the momentum of the particle.arrow_forwardIf a charged particle moves in a straight line, can you conclude that there is no magnetic field present?arrow_forwardA wire 2.80 m in length carries a current of 5.00 A in a region where a uniform magnetic field has a magnitude of 0.390 T. Calculate the magnitude of the magnetic force on the wire assuming the angle between the magnetic field and the current is (a) 60.0, (b) 90.0, and (c) 120.arrow_forward
- A proton (charge +e, mass mp), a deuteron (charge +e, mass 2mp), and an alpha particle (charge +2e, mass 4mp) are accelerated from rest through a common potential difference V. Each of the particles enters a uniform magnetic field B, with its velocity in a direction perpendicular to B. The proton moves in a circular path of radius p. In terms of p, determine (a) the radius rd of the circular orbit for the deuteron and (b) the radius r for the alpha particle.arrow_forwardA charged particle is traveling through a uniform magnetic field. Which of the following statements are true of the magnetic field? There may be more than one correct statement. (a) It exerts a force on the particle parallel to the field. (b) It exerts a force on the particle along the direction of its motion. (c) It increases the kinetic energy of the particle. (d) It exerts a force that is perpendicular to the direction of motion. (e) It does not change the magnitude of the momentum of the particle.arrow_forwardWhat magnetic field is required in order to confine a proton moving with a speed of 4.0 × 106 m/s to a circular orbit of radius 10 cm?arrow_forward
- Calculate the magnitude of the magnetic field at a point 25.0 cm from a long, thin conductor carrying a current of 2.00 A.arrow_forwardReview. An electron moves in a circular path perpendicular to a constant magnetic field of magnitude 1.00 mT. The angular momentum of the electron about the center of the circle is 4.00 × 10−25 kg · m2/s. Determine (a) the radius of the circular path and (b) the speed of the electron.arrow_forwardReview. A 30.0-g metal hall having net charge Q = 5.00 C is thrown out of a window horizontally north at a speed v = 20.0 m/s. The window is at a height h = 20.0 m above the ground. A uniform, horizontal magnetic field of magnitude B = 0.010 0 T is perpendicular to the plane of the balls trajectory and directed toward the west. (a) Assuming the ball follows the same trajectory as it would in the absence of the magnetic field, find the magnetic force acting on the ball just before it hits the ground. (b) Based on the result of part (a), is it justified for three-significant-digit precision to assume the trajectory is unaffected by the magnetic field? Explain.arrow_forward
- Why is the following situation impossible? Figure P28.46 shows an experimental technique for altering the direction of travel for a charged particle. A particle of charge q = 1.00 C and mass m = 2.00 1015 kg enters the bottom of the region of uniform magnetic field at speed = 2.00 105 m/s, with a velocity vector perpendicular to the field lines. The magnetic force on the particle causes its direction of travel to change so that it leaves the region of the magnetic field at the top traveling at an angle from its original direction. The magnetic field has magnitude B = 0.400 T and is directed out of the page. The length h of the magnetic field region is 0.110 m. An experimenter performs the technique and measures the angle at which the particles exit the top of the field. She finds that the angles of deviation are exactly as predicted. Figure P28.46arrow_forwardA proton moving in the plane of the page has a kinetic energy of 6.00 MeV. A magnetic field of magnitude H = 1.00 T is directed into the page. The proton enters the magnetic field with its velocity vector at an angle = 45.0 to the linear boundary of' the field as shown in Figure P29.80. (a) Find x, the distance from the point of entry to where the proton will leave the field. (b) Determine . the angle between the boundary and the protons velocity vector as it leaves the field.arrow_forwardA 1.00-kg ball having net charge Q = 5.00 C is thrown out of a window horizontally at a speed v = 20.0 m/s. The window is at a height h = 20.0 m above the ground. A uniform horizontal magnetic field of magnitude B = 0.010 0 T is perpendicular to the plane of the balls trajectory. Find the magnitude of the magnetic force acting on the ball just before it hits the ground. Hint: Ignore magnetic forces in finding the balls final velocity.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning