College Physics
1st Edition
ISBN: 9781938168000
Author: Paul Peter Urone, Roger Hinrichs
Publisher: OpenStax College
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 29, Problem 11PE
UV
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider an unknown metal X for the following questions:
The metal X requires photons of light to have a frequency higher than 7.278E+14 Hz. What is the binding energy for this metal, in J?
What is the maximum kinetic energy in eV of electrons ejected from a certain metal by 441 nm EM radiation, given the binding energy is 2.23 eV?
eV
A metal with a binding energy of 2.4 eV, is hit with photons of light of a single frequency. The stopping potential of the electron is determined to be 1.3V. The most energetic electrons are ejected at a speed of _______km/s.
Chapter 29 Solutions
College Physics
Ch. 29 - Give an example of a physical entity that is...Ch. 29 - Give an example of a physical entity that is not...Ch. 29 - What aspect of the blackbody spectrum forced...Ch. 29 - If Planck's constant were large, say 1034 times...Ch. 29 - Why don't we notice quantization in everyday...Ch. 29 - Is visible light the only type of EM radiation...Ch. 29 - Which aspects of the photoelectric effect cannot...Ch. 29 - Is the photoelectric effect a direct consequence...Ch. 29 - Insulators (nonmetals) have a higher BE than...Ch. 29 - If you pick up and shake a piece of metal that has...
Ch. 29 - Why are UV, x rays, and rays called ionizing...Ch. 29 - How can treating food with ionizing radiation help...Ch. 29 - Some television tubes are CRTs. They use an...Ch. 29 - Tanning salons use "safe" UV with a longer...Ch. 29 - Your pupils dilate when visible light intensity is...Ch. 29 - One could feel heat transfer in the form of...Ch. 29 - Can a single microwave photon cause cell damage?...Ch. 29 - In an the maximum photon energy E given by hf=qV....Ch. 29 - Which formula may be used for the momentum of all...Ch. 29 - Is there any measurable difference between the...Ch. 29 - Why don't we feel the momentum of sunlight when we...Ch. 29 - How does the interference of water waves differ...Ch. 29 - Describe one type of evidence for the wave nature...Ch. 29 - Describe one type of evidence for the particle...Ch. 29 - What is the Heisenberg uncertainty principle? Does...Ch. 29 - In what ways are matter and energy related that...Ch. 29 - A LiBr molecule oscillates with a frequency of...Ch. 29 - The difference in energy between allowed...Ch. 29 - A physicist is watching a 15-kg orangutan at a zoo...Ch. 29 - What is the longest-wavelength EM radiation that...Ch. 29 - Find the longest-wavelength photon that can eject...Ch. 29 - What is the binding energy in eV of electrons in...Ch. 29 - Calculate the binding energy in eV of electrons in...Ch. 29 - What is the maximum kinetic energy in eV of...Ch. 29 - UV radiation having a wavelength of 120 nm falls...Ch. 29 - Violet light of wavelength 400 nm ejects electrons...Ch. 29 - UV radiation having a 300-nm wavelength falls on...Ch. 29 - What is the wavelength of EM radiation that ejects...Ch. 29 - Find the wavelength of photons that eject 0.100-eV...Ch. 29 - What is the maximum velocity of electrons ejected...Ch. 29 - Photoelectrons from a material with a binding...Ch. 29 - A laser with a power output of 2.00 mW at a...Ch. 29 - (a) Calculate the number of photoelectrons per...Ch. 29 - Unreasonable Results Red light having a wavelength...Ch. 29 - Unreasonable Results (a) What is the binding...Ch. 29 - What is the energy in joules and eV of a photon in...Ch. 29 - (a) Find the energy in joules and eV of photons in...Ch. 29 - Calculate the frequency in hertz of a 1.00-MeV ...Ch. 29 - (a) What is the wavelength of a 1.00-eV photon?...Ch. 29 - Do the unit conversions necessary to show that...Ch. 29 - Confirm the statement in the text that the range...Ch. 29 - (a) Calculate the energy in eV of an IP photon of...Ch. 29 - Prove that, to three-digit accuracy,...Ch. 29 - (a) What is the maximum energy in eV of photons...Ch. 29 - What is the accelerating voltage of an x-ray tube...Ch. 29 - (a) What is the ratio of power outputs by two...Ch. 29 - How many photons per second are emitted by the...Ch. 29 - Some satellites use nuclear power. (a) If such a...Ch. 29 - (a) If the power output of a 650-kHz radio station...Ch. 29 - How many x-ray photons per second are created by...Ch. 29 - (a) How far away must you be from a 650-kHz radio...Ch. 29 - Assuming that 10.0% of a 100-W light bulb's energy...Ch. 29 - Construct Your Own Problem Consider a laser pen....Ch. 29 - (a) Find the momentum of a 4.00-cm-wavelength...Ch. 29 - (a) What is the momentum of a 0.0100-nm-wavelength...Ch. 29 - (a) What is the wavelength of a photon that has a...Ch. 29 - (a) A -ray photon has a momentum of...Ch. 29 - (a) Calculate the momentum of a photon having a...Ch. 29 - Repeat the previous problem for a...Ch. 29 - (a) Calculate the wavelength of a photon that has...Ch. 29 - (a) Find the momentum of a 100-keV x-ray photon....Ch. 29 - Take the ratio of relativistic rest energy, E=mc2,...Ch. 29 - Construct Your Own Problem Consider a space sail...Ch. 29 - Unreasonable Results A car feels a small force due...Ch. 29 - At what velocity will an electron have a...Ch. 29 - What is the wavelength of an electron moving at...Ch. 29 - At what velocity does a proton have a 6.00-fm...Ch. 29 - What is the velocity of a 0.400-kg billiard ball...Ch. 29 - Find the wavelength of a proton moving at 1.00% of...Ch. 29 - Experiments are performed with ultra-cold neutrons...Ch. 29 - (a) Find the velocity of a neutron that has a...Ch. 29 - What is the wavelength of an electron accelerated...Ch. 29 - What is the kinetic energy of an electron in a TEM...Ch. 29 - (a) Calculate the velocity of an electron that has...Ch. 29 - The velocity of a proton emerging from a Van de...Ch. 29 - The kinetic energy of an electron accelerated in...Ch. 29 - Unreasonable Results (a) Assuming it is...Ch. 29 - (a) If the position of an electron in a membrane...Ch. 29 - (a) If the position of a chlorine ion in a...Ch. 29 - Suppose the velocity of an electron in an atom is...Ch. 29 - The velocity of a proton in an accelerator is...Ch. 29 - A relatively long-lived excited state of an atom...Ch. 29 - (a) The lifetime of a highly unstable nucleus is...Ch. 29 - The decay energy of a short-lived particle has an...Ch. 29 - The decay energy of a short-lived nuclear excited...Ch. 29 - What is the approximate uncertainty in the mass of...Ch. 29 - Derive the approximate form of Heisenberg's...Ch. 29 - Integrated Concepts The 54.0-eV electron in...Ch. 29 - Integrated Concepts An electron microscope...Ch. 29 - Integrated Concepts A certain heat lamp emits 200...Ch. 29 - Integrated Concepts On its high power setting, a...Ch. 29 - Integrated Concepts (a) Calculate the amount of...Ch. 29 - Integrated Concepts (a) What is for an electron...Ch. 29 - Integrated Concepts (a) What is for a proton...Ch. 29 - Integrated Concepts An electron microscope passes...Ch. 29 - Integrated Concepts (a) Calculate the velocity of...Ch. 29 - Integrated Concepts (a) What is the separation...Ch. 29 - Integrated Concepts A laser with a power output of...Ch. 29 - Integrated Concepts One problem with x rays is...Ch. 29 - Integrated Concepts A 1.00-fm photon has a...Ch. 29 - Integrated Concepts The momentum of light is...Ch. 29 - Integrated Concepts Sunlight above the Earth's...
Additional Science Textbook Solutions
Find more solutions based on key concepts
The proton is a composite particle composed of three quarks, all of which are either up quarks (u; charge +23e)...
Essential University Physics: Volume 2 (3rd Edition)
The electromagnetic spectrum of light is often arranged in terms of frequency. Which one of the following has t...
Lecture- Tutorials for Introductory Astronomy
Two sinusoidal waves are moving through a medium in the positive x-direction, both having amplitudes of 6.00 cm...
University Physics Volume 1
The pV-diagram of the Carnot cycle.
Sears And Zemansky's University Physics With Modern Physics
41. A 0.300 kg oscillator has a speed of 95.4cm/s when its displacement is 3.00cm and 71.4 cm/s when its displ...
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics (4th Edition)
TEST YOUR UNDERSTANDING OF SECTION 24.1 A capacitor has vacuum in the space between the conductors. If you doub...
University Physics with Modern Physics (14th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Measured X-ray energies for Silver (Z=47) are: K_alpha= 21.990 keV, K_beta=25.145. The binding energy of the K shell electron in Silver is 25.514 keV. Using these find the energy of L_alpha X-ray and binding energy of the L electron.arrow_forwardAn unknown metal sample is interrogated using a beam of X-rays to liberate electrons which are then caught by a detector that determines their kinetic energy. A beam of X-rays with wavelength 9.54nm irradiate the surface of this metal, and the detector observes electrons with kinetic energies equal to 7.3716*10-18 J. What is the binding energy of this unknown metal sample.arrow_forwardAn 8.3 MeV alpha particle is shot directly toward the nucleus of a gold atom (atomic number 79). What is the distance of closest approach of the alpha particle to the nucleus?arrow_forward
- A laser with power output 2.0mW at a wavelength 400nm is projected onto a calcium metal. The binding energy is 2.31ev. I. how many electrons per second are ejected? ii. What power is carried away by the electrons?arrow_forwardA narrow beam of 0.5 MeV photons is incident normally on a 3 mm iron slab. What fraction of the phatons have an interaction in the slab? Mass attenuation coefficient of iron 0.08 cm/g, density of iron =7.87 g/cm O a. 0.828 O b. 0.172 Oc. 0.58 O d. 0.42arrow_forwardIn positron-emission tomography (PET) used in medical research and diagnosis, compounds containing unstable nuclei that emit positrons are introduced into the brain, destined for a site of interest in the brain. When a positron is emitted, it goes only a short distance before coming nearly to rest. It forms a bound state with an electron, called "positronium", which is rather similar to a hydrogen atom. The binding energy of positronium is very small compared to the rest energy of an electron. After a short time the positron and electron annihilate. In the annihilation, the positron and the electron disappear, and all of their rest energy goes into two photons (particles of light) which have zero mass; all their energy is kinetic energy. These high energy photons, called "gamma rays", are emitted at nearly 180° to each other. What energy of gamma ray (in MeV, million electron volts) should each of the detectors be made sensitive to? (The mass of an electron or positron is 9 x 10-31 kg.…arrow_forward
- A laser with power output of 2.0mW at a wavelength of 400nm is projected onto a calcium metal. The binding energy is 2.31eV. i. How many electrons per second are ejected. ii.what power us carried away by the electronic?arrow_forwardA 20 MeV alpha particle is fired toward a 238U nucleus. It follows the path as shown. What is the alpha particle’s speed when it is closest to the nucleus, 20 fm from its center? Assume that the nucleus doesn’t move.arrow_forwardQ 22. In a photochemical reaction A → B + C , the quantum efficiency with 500 nm light is 1.2× 10²mol.einstein-'. After exposure of 200 millimoles of A to the light, 1.77 millimoles of B is formed. How many photons were absorbed by A?arrow_forward
- The Ka X-ray emission line of tungsten occurs at λ = 0.021 nm. The energy difference between K and L levels in this atoms is about (a) 0.51 MeV (b) 1.2 MeV (c) 59 keV (d) 13.6 eVarrow_forwardWhat is the wavelength (in nm) of EM radiation that ejects 3.56 eV electrons from calcium metal, given that the binding energy is 2.71 eV? nmarrow_forwardQuestion 6. a) Photons of incoming radiation have an energy of E = 2500 kl/mol. Calculate the wavelength (in nm) of those photons. b) Would photons from part (a) be able to ionize a Be3+ ion if the electron is found in n=3? Show a calculation to support your answer. c). Consider the following balanced combustion reaction: C7H16(1) + 11 O2(g) 7 CO2(g) + 8 H2O(g) A:H°= -1160 kJ/mol If the density of C7H16(1) is 0.68 g/mL, how much heat (in J and scientific notation) is released if 125 mL of C7H16(1) undergoes complete combustion?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning