
Conceptual Physical Science (6th Edition)
6th Edition
ISBN: 9780134060491
Author: Paul G. Hewitt, John A. Suchocki, Leslie A. Hewitt
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 28, Problem 85E
Why is dark energy not called the dark force?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
A uniform ladder of length L and weight w is leaning against a vertical wall. The coefficient of static friction between the ladder and the floor is the same as that between the ladder and the wall. If this
coefficient of static friction is μs : 0.535, determine the smallest angle the ladder can make with the floor without slipping.
°
=
A 14.0 m uniform ladder weighing 480 N rests against a frictionless wall. The ladder makes a 55.0°-angle with the horizontal.
(a) Find the horizontal and vertical forces (in N) the ground exerts on the base of the ladder when an 850-N firefighter has climbed 4.10 m along the ladder from the bottom.
horizontal force
magnitude
342.
N
direction
towards the wall
✓
vertical force
1330
N
up
magnitude
direction
(b) If the ladder is just on the verge of slipping when the firefighter is 9.10 m from the bottom, what is the coefficient of static friction between ladder and ground?
0.26
×
You appear to be using 4.10 m from part (a) for the position of the…
Your neighbor designs automobiles for a living. You are fascinated with her work. She is designing a new automobile and needs to determine how strong the front suspension should be. She knows of
your fascination with her work and your expertise in physics, so she asks you to determine how large the normal force on the front wheels of her design automobile could become under a hard stop,
ma
when the wheels are locked and the automobile is skidding on the road. She gives you the following information. The mass of the automobile is m₂ = 1.10 × 103 kg and it can carry five passengers of
average mass m = 80.0 kg. The front and rear wheels are separated by d = 4.45 m. The center of mass of the car carrying five passengers is dCM = 2.25 m behind the front wheels and
hcm = 0.630 m above the roadway. A typical coefficient of kinetic friction between tires and roadway is μk 0.840. (Caution: The braking automobile is not in an inertial reference frame. Enter the
magnitude of the force in N.)…
John is pushing his daughter Rachel in a wheelbarrow when it is stopped by a brick 8.00 cm high (see the figure below). The handles make an angle of 0 = 17.5° with the ground. Due to the weight of
Rachel and the wheelbarrow, a downward force of 403 N is exerted at the center of the wheel, which has a radius of 16.0 cm. Assume the brick remains fixed and does not slide along the ground. Also
assume the force applied by John is directed exactly toward the center of the wheel. (Choose the positive x-axis to be pointing to the right.)
(a) What force (in N) must John apply along the handles to just start the wheel over the brick?
(No Response) N
(b) What is the force (magnitude in kN and direction in degrees clockwise from the -x-axis) that the brick exerts on the wheel just as the wheel begins to lift over the brick?
magnitude (No Response) KN
direction
(No Response) ° clockwise from the -x-axis
Chapter 28 Solutions
Conceptual Physical Science (6th Edition)
Ch. 28 - Is the universe in space or is space in the...Ch. 28 - What is a Cepheid?Ch. 28 - Prob. 3RCQCh. 28 - What is the approximate age of the universe?Ch. 28 - the average temperature of the universe today is...Ch. 28 - According to cosmic inflation theory, how long did...Ch. 28 - At what point did the universes temperature even...Ch. 28 - What did inflation do to the quantum fluctuations...Ch. 28 - Prob. 9RCQCh. 28 - How many dimensions are there in spacetime?
Ch. 28 - Prob. 11RCQCh. 28 - Car an accelerated frame of reference be...Ch. 28 - You release a ball while standing on the floor of...Ch. 28 - Prob. 14RCQCh. 28 - What happens to starlight as it passes close to...Ch. 28 - If you walk at 1 km/h down the aisle toward the...Ch. 28 - In the preceding question, is your approximate...Ch. 28 - Within a spaceship moving at 99% the speed of...Ch. 28 - Why is the essence of a coffee table best captured...Ch. 28 - Does it necessarily take a minimum of 25,000 years...Ch. 28 - Prob. 21RCQCh. 28 - If we cant see dark matter, how do we know it is...Ch. 28 - Is dark matter found mostly within a galaxy or...Ch. 28 - The closer a planet is to the Sun, the faster it...Ch. 28 - In a huge cloud of ordinary matter and dark...Ch. 28 - Prob. 26RCQCh. 28 - What was Einsteins cosmological constant?Ch. 28 - What did Einstein refer to as the greatest blunder...Ch. 28 - According to recent evidence, how long ago did the...Ch. 28 - What does WMAP stand for?Ch. 28 - The Fate of the Universe 31. What is probably the...Ch. 28 - Which is more abundant: dark matter or ordinary...Ch. 28 - According to the heat death scenario, about how...Ch. 28 - What does the Big Rip scenario assume about dark...Ch. 28 - What scenario for the fate of the universe...Ch. 28 - Rank the following in order of increasing...Ch. 28 - Rank the following in order of increasing...Ch. 28 - Rank the following in order of longest ago to most...Ch. 28 - Rank the following in order of increasing...Ch. 28 - When was most of the helium in the universe...Ch. 28 - What does the expansion of space do to light...Ch. 28 - A police officer pulls you over for speeding. He...Ch. 28 - If the initial universe had remained hotter for a...Ch. 28 - Prob. 47ECh. 28 - No galaxy that has been found so far is less than...Ch. 28 - Are astronomers able to point their telescopes in...Ch. 28 - A helium balloon here on Earth pops, releasing...Ch. 28 - Astronomers tell us that the average temperature...Ch. 28 - The average temperature of the universe right now...Ch. 28 - What are three lines of evidence supporting cosmic...Ch. 28 - What if there were symmetry to cosmic background...Ch. 28 - Is cosmic inflation a cause or an effect? How...Ch. 28 - Prob. 56ECh. 28 - If gravity is not a force, then what is it?Ch. 28 - You toss a tennis ball up and down in front of you...Ch. 28 - You toss a tennis ball up and down in front of you...Ch. 28 - Prob. 60ECh. 28 - Where does a clock run slower: at the front end or...Ch. 28 - Prob. 62ECh. 28 - An astronaut is provided a gravity when the ships...Ch. 28 - Being ultra-sensitive, should a person who wants...Ch. 28 - If you stand in the street and shine a beam of...Ch. 28 - A man leaves his identical twin brother behind to...Ch. 28 - Why does the gravitational attraction between the...Ch. 28 - When do clocks move slowest on Mercury?Ch. 28 - Prob. 69ECh. 28 - Prob. 70ECh. 28 - When you drive down the highway, you are moving...Ch. 28 - Astronomers view light coming from distant...Ch. 28 - Inside the moving compartment of Figure 28.18,...Ch. 28 - Prob. 74ECh. 28 - Time is required for light to travel along a path...Ch. 28 - Prob. 76ECh. 28 - What might we assume about the distribution of...Ch. 28 - Early astronomers such as Kepler and Newton...Ch. 28 - What force allows dark matter to clump?Ch. 28 - Why doesnt dark matter clump together as...Ch. 28 - If dark matter is affected by gravity, might there...Ch. 28 - What is the relationship between dark energy and...Ch. 28 - Is space just the absence of matter?Ch. 28 - What is one important difference between dark...Ch. 28 - Why is dark energy not called the dark force?Ch. 28 - The y-axis in the largest graph of Figure 28.27 is...Ch. 28 - Mass can transform into energy, and energy can...Ch. 28 - If the universe were unchanging and there were an...Ch. 28 - Prob. 89ECh. 28 - If we cant even predict the weather, how can we...Ch. 28 - Prob. 91DQCh. 28 - Prob. 92DQCh. 28 - Prob. 93DQCh. 28 - Prob. 94DQCh. 28 - Prob. 95DQCh. 28 - Choose the BEST answer to the question or the BEST...Ch. 28 - If the universe stopped expanding at this very...Ch. 28 - What percentage of galaxies were created during...Ch. 28 - What do cosmic inflation and dark energy have in...Ch. 28 - Light bends in a gravitational field. Why isnt...Ch. 28 - Time slows in a gravitational field. Would time...Ch. 28 - Prob. 7RATCh. 28 - Dark matter is (a) ordinary matter that is no...Ch. 28 - Space in our local universe is (a) not empty. (b)...Ch. 28 - Which theory for the fate of the universe assumes...
Additional Science Textbook Solutions
Find more solutions based on key concepts
What are four functions of connective tissue?
Anatomy & Physiology (6th Edition)
4. What five specific threats to biodiversity are described in this chapter? Provide an example of each.
Biology: Life on Earth (11th Edition)
Acetobacter is necessary for only one of the steps of vitamin C manufacture. The easiest way to accomplish this...
Microbiology: An Introduction
Plants use the process of photosynthesis to convert the energy in sunlight to chemical energy in the form of su...
Campbell Essential Biology (7th Edition)
What percentage of Earths land surface do glaciers presently cover? ____________
Applications and Investigations in Earth Science (9th Edition)
Why is petroleum jelly used in the hanging-drop procedure?
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- An automobile tire is shown in the figure below. The tire is made of rubber with a uniform density of 1.10 × 103 kg/m³. The tire can be modeled as consisting of two flat sidewalls and a tread region. Each of the sidewalls has an inner radius of 16.5 cm and an outer radius of 30.5 cm as shown, and a uniform thickness of 0.600 cm. The tread region can be approximated as having a uniform thickness of 2.50 cm (that is, its inner radius is 30.5 cm and outer radius is 33.0 cm as shown) and a width of 19.2 cm. What is the moment of inertia (in kg. m²) of the tire about an axis perpendicular to the page through its center? 2.18 x Sidewall 33.0 cm 30.5 cm 16.5 cm Treadarrow_forwardA person on horseback is on a drawbridge which is at an angle = 20.0° above the horizontal, as shown in the figure. The center of mass of the person-horse system is d = 1.35 m from the end of the bridge. The bridge is l = 7.00 m long and has a mass of 2,300 kg. A cable is attached to the bridge 5.00 m from the frictionless hinge and to a point on the wall h = 12.0 m above the bridge. The mass of person plus horse is 1,100 kg. Assume the bridge is uniform. Suddenly (and most unfortunately for the horse and rider), the ledge where the bridge usually rests breaks off, and at the same moment the cable snaps and the bridge swings down until it hits the wall. ÚI MAJI A TLA MAJA AUTA (a) Find the angular acceleration (magnitude, in rad/s²) of the bridge once it starts to move. 2.22 Use the rotational analogue of Newton's second law. The drawbridge can be modeled as a rod, with rotation axis about one end. rad/s² (b) How long (in s) does the horse and rider stay in contact with the bridge…arrow_forwardTwo long, parallel wires carry currents of I₁ = 2.70 A and I2 = 4.85 A in the directions indicated in the figure below, where d = 22.0 cm. (Take the positive x direction to be to the right.) 12 (a) Find the magnitude and direction of the magnetic field at a point midway between the wires. magnitude direction 3.91 270 μπ ⚫ counterclockwise from the +x axis (b) Find the magnitude and direction of the magnetic field at point P, located d = 22.0 cm above the wire carrying the 4.85-A current. magnitude direction Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. μT The response you submitted has the wrong sign.° counterclockwise from the +x axisarrow_forward
- O Macmillan Learning The mass of a particular eagle is twice that of a hunted pigeon. Suppose the pigeon is flying north at Vi2 = 16.1 m/s when the eagle swoops down, grabs the pigeon, and flies off. At the instant right before the attack, the eagle is flying toward the pigeon at an angle 0 = 64.3° below the horizontal and a speed of Vi,1 = 37.9 m/s. What is the speed of of the eagle immediately after it catches its prey? What is the magnitude & of the angle, measured from horizontal, at which the eagle is flying immediately after the strike? Uf = II x10 TOOLS Vi.1 Vi,2 m/sarrow_forwardWhat is the equivalent resistance if you connect a 1.7 Ohm, a 9.3 Ohm, and a 22 Ohm resistor in series? (Give your answer as the number of Ohms.)arrow_forwardThree wires meet at a junction. One wire carries a current of 5.2 Amps into the junction, and a second wire carries a current of 3.7 Amps out of the junction. What is the current in the third wire? Give your answer as the number of Amps, and give a positive number if the current in that wire flows out of the junction, or a negative number if the current in that wire flows into the junction.arrow_forward
- What is the equivalent resistance if you connect a 4.5 Ohm, a 6.8 Ohm, and a 15 Ohm resistor in parallel? (Give your answer as the number of Ohms.)arrow_forwardSuppose a heart defibrillator passes 10.5 Amps of current through a patient's torso for 5.0 x 10-3 seconds in order to restore a regular heartbeat. The voltage across the defibrillator is 9800 volts for the entire time that current is flowing. If 7.25 kg of body tissue is involved, with a specific heat of 3500 J/(kg°C), then what is the resulting temperature increase of the person's torso? (Give your answer as the number of degrees C.)arrow_forwardThe figure below is a cross-sectional view of a coaxial cable. The center conductor is surrounded by a rubber layer, an outer conductor, and another rubber layer. In a particular application, the current in the inner conductor is I₁ = 1.04 A out of the page and the current in the outer conductor is I2 = 2.90 A into the page. Assuming the distance d = 1.00 mm, answer the following. 4 12 (a) Determine the magnitude and direction of the magnetic field at point a. magnitude 208 direction upward (b) Determine the magnitude and direction of the magnetic field at point b. magnitude direction 238 You can approach this problem by finding the field produced by current I₁ and the field produced by I2 and then adding them vectorially. μT downwardarrow_forward
- Shoto, from My Hero Academia, has a power (or a “quirk”) that allows him to make large amounts of ice from nothing. Let us say that due to a fire a 361 kg steel beam is heated to 943.˚C and Shoto creates 390. kg of ice at 0.00˚C around it to cool it down. What is the final temperature of the system after the ice melts and it reaches thermal equilibrium? The specific heat of steel is 502 J/kg˚C. The specific heat of water is 4186 J/kg˚C. The latent heat of fusion for ice is 3.33⋅10^5 J/kg.arrow_forwardA 25.0 cm long organ pipe is filled with air and is open at one end and closed at the other. The speed of sound in air at 0°C is 331 m/s. What is the frequency of the fourth mode of vibration? Multiple Choice О 1,550 Hz О 1,750 Hz О 2,320 Hz О 2,720 Hz О 3,170 Hzarrow_forward23.4 g of coffee beans at room temperature (18.6 °C) is mixed into 316 g of water at 96.8 °C in an effort to make coffee. The entire system is poured in a 363 g ceramic mug. Assume the mug is initally also at room temperature (18.6 °C). What is the final temperature of the mixture? The specific heat of ground coffee beans is 1670 J/kg˚C, the specific heat of water is 4186 J/kg˚C, and the specific heat of the mug is 850. J/kg˚C.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
- An Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning

Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax

Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning

Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning

An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
General Relativity: The Curvature of Spacetime; Author: Professor Dave Explains;https://www.youtube.com/watch?v=R7V3koyL7Mc;License: Standard YouTube License, CC-BY