Physics for Scientists and Engineers with Modern Physics, Technology Update
9th Edition
ISBN: 9781305401969
Author: SERWAY, Raymond A.; Jewett, John W.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 28, Problem 76AP
To determine
The proof for
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The figure shows an ideal battery of emf € = 13 V, a resistor
of resistance R = 6.3 M2, and an uncharged capacitor of
capacitance C = 6.3 μF. After switch S is closed, what is
the current through the resistor when the charge on the
capacitor is 9.5 μC?
4
R
the emf source, E=3.2 V, of the circuit shown in the figure has negligible internal resistance. the resistors have resistances R1=3 ohm and R2=4.2 ohm. the capacitor has a capacitance C= 4.5uF.
A) determine the time constant t , in units of microseconds for charging the capacitor.
B) what is the charge Q on the capacitor in units of microcoulomb?
As shown a circuit model for the transmission of an electrical signal such as cable TV to a large number of subscribers. Each subscriber connects a load resistance RL between the transmission line and the ground. The ground is assumed to be at zero potential and able to carry any current between anyground connections with negligible resistance. The resistance of the transmission line between the connection points of different subscribers is modeled as the constant resistance RT . Show that the equivalent resistance across the signal source is Req = (1)/(2) [(4RT RL + RT2)1/2 + RT]Suggestion: Because the number of subscribers is large, the equivalent resistance would not change noticeably if the first subscriber canceled the service. Consequently, the equivalent resistance of the section of the circuit to the right of the first load resistor is nearly equal to Req.
Chapter 28 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
Ch. 28.1 - To maximize the percentage of the power from the...Ch. 28.2 - With the switch in the circuit of Figure 27.4a...Ch. 28.2 - With the switch in the circuit of Figure 27.6a...Ch. 28.2 - Prob. 28.4QQCh. 28.4 - Consider the circuit in Figure 27.17 and assume...Ch. 28 - Prob. 1OQCh. 28 - Prob. 2OQCh. 28 - Prob. 3OQCh. 28 - Prob. 4OQCh. 28 - Prob. 5OQ
Ch. 28 - Prob. 6OQCh. 28 - Prob. 7OQCh. 28 - Prob. 8OQCh. 28 - Prob. 9OQCh. 28 - Prob. 10OQCh. 28 - Prob. 11OQCh. 28 - Prob. 12OQCh. 28 - Prob. 13OQCh. 28 - Prob. 14OQCh. 28 - Prob. 15OQCh. 28 - Prob. 1CQCh. 28 - Prob. 2CQCh. 28 - Why is it possible for a bird to sit on a...Ch. 28 - Prob. 4CQCh. 28 - Prob. 5CQCh. 28 - Prob. 6CQCh. 28 - Prob. 7CQCh. 28 - Prob. 8CQCh. 28 - Is the direction of current in a battery always...Ch. 28 - Prob. 10CQCh. 28 - Prob. 1PCh. 28 - Two 1.50-V batterieswith their positive terminals...Ch. 28 - An automobile battery has an emf of 12.6 V and an...Ch. 28 - Prob. 4PCh. 28 - Prob. 5PCh. 28 - Prob. 6PCh. 28 - Prob. 7PCh. 28 - Prob. 8PCh. 28 - Prob. 9PCh. 28 - Prob. 10PCh. 28 - Prob. 11PCh. 28 - Prob. 12PCh. 28 - Prob. 13PCh. 28 - Prob. 14PCh. 28 - Prob. 15PCh. 28 - Prob. 16PCh. 28 - Prob. 17PCh. 28 - Prob. 18PCh. 28 - Prob. 19PCh. 28 - Why is the following situation impossible? A...Ch. 28 - Prob. 21PCh. 28 - Prob. 22PCh. 28 - Prob. 23PCh. 28 - Prob. 24PCh. 28 - Prob. 25PCh. 28 - The following equations describe an electric...Ch. 28 - Prob. 27PCh. 28 - Prob. 28PCh. 28 - Prob. 29PCh. 28 - Prob. 30PCh. 28 - Prob. 31PCh. 28 - Prob. 32PCh. 28 - Prob. 33PCh. 28 - Prob. 34PCh. 28 - Prob. 35PCh. 28 - Prob. 36PCh. 28 - An uncharged capacitor and a resistor are...Ch. 28 - Prob. 38PCh. 28 - Prob. 39PCh. 28 - A 10.0-F capacitor is charged by a 10.0-V battery...Ch. 28 - Prob. 41PCh. 28 - Prob. 42PCh. 28 - Prob. 43PCh. 28 - Prob. 44PCh. 28 - A charged capacitor is connected to a resistor and...Ch. 28 - Prob. 46PCh. 28 - Prob. 47PCh. 28 - Prob. 48PCh. 28 - Prob. 49APCh. 28 - Prob. 50APCh. 28 - Prob. 51APCh. 28 - Prob. 52APCh. 28 - Prob. 53APCh. 28 - Prob. 54APCh. 28 - Prob. 55APCh. 28 - Prob. 56APCh. 28 - Prob. 57APCh. 28 - Why is the following situation impossible? A...Ch. 28 - Prob. 59APCh. 28 - Prob. 60APCh. 28 - When two unknown resistors are connected in series...Ch. 28 - Prob. 62APCh. 28 - Prob. 63APCh. 28 - A power supply has an open-circuit voltage of 40.0...Ch. 28 - Prob. 65APCh. 28 - Prob. 66APCh. 28 - Prob. 67APCh. 28 - Prob. 68APCh. 28 - Prob. 69APCh. 28 - Prob. 70APCh. 28 - Prob. 71APCh. 28 - Prob. 72APCh. 28 - A regular tetrahedron is a pyramid with a...Ch. 28 - An ideal voltmeter connected across a certain...Ch. 28 - Prob. 75APCh. 28 - Prob. 76APCh. 28 - Prob. 77APCh. 28 - Prob. 78APCh. 28 - Prob. 79APCh. 28 - Prob. 80APCh. 28 - Prob. 81APCh. 28 - Prob. 82CPCh. 28 - Prob. 83CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Figure P29.45 shows five resistors connected between terminals a and b. a. What is the equivalent resistance of this combination of resistors? b. What is the current through each resistor if a 24.0-V battery is connected across the terminals?arrow_forwardA flashing lamp in a Christmas earring is based on an RC discharge of a capacitor through its resistance. The effective duration of the flash is 0.250 s, during which it produces an average 0.500 W from an average 3.00 V. (a) What energy does it dissipate? (b) How much charge moves through the lamp? (c) Find the capacitance, (d) What is the resistance of the lamp? (Since average values are given for some quantities, the shape of the pulse profile is not needed.)arrow_forwardA student makes a homemade resistor from a graphite pencil 5.00 cm long, where the graphite is 0.05 mm indiameter. The resistivity of the graphite is =1.38102/m . The homemade resistor is place inseries with a switch, a 10.00-mF capacitor and a 0.50-V power source, (a) What is the BC time constant of the circuit? (b) What is the potential drop across the pencil 1.00 s after the switch is closed?arrow_forward
- Figure P27.48 shows a circuit model for the transmission of an electrical signal such as cable TV to a large number of subscribers. Each subscriber connects a load resistance RL between the transmission line and the ground. The ground is assumed to be at zero potential and able to carry any current between any ground connections with negligible resistance. The resistance of the transmission line between the connection points of different subscribers is modeled as the constant resistance RT. Show that the equivalent resistance across the signal source is Req=12[(4RTRL+RT2)1/2+RT] Suggestion: Because the number of subscribers is large, the equivalent resistance would not change noticeably if the first subscriber canceled the service. Consequently, the equivalent resistance of the section of the circuit to the right of the first load resistor is nearly equal to Req. Figure P27.48arrow_forwardConsider a series RC circuit as in Figure P28.38 for which R = 1.00 M, C = 5.00 F, and = 30.0 V. Find (a) the time constant of the circuit and (b) the maximum charge on the capacitor after the switch is thrown closed. (c) Find the current in the resistor 10.0 s after the switch is closed.arrow_forwardFour resistors are connected to a battery as shown in Figure P21.40. The current in the battery is I, the battery emf is , and the resistor values are R1 = R, R2 = 2R, R3 = 4R, and R4 = 3R. (a) Rank the resistors according to the potential difference across them, from largest to smallest. Note any cases of equal potential differences. (b) Determine the potential difference across each resistor in terms of . (c) Rank the resistors according to the current in them, from largest to smallest. Note any cases of equal currents. (d) Determine the current in each resistor in terms of I. (e) If R3 is increased, what happens to the current in each of the resistors? (f) In the limit that R3 , what are the new values of the current in each resistor in terms of I, the original current in the battery? Figure P21.40arrow_forward
- The student engineer of a campus radio station wishes to verify the effectiveness of the lightning rod on the antenna mast (Fig. P21.71). The unknown resistance Rx is between points C and E. Point E is a true ground, but it is inaccessible for direct measurement because this stratum is several meters below the Earths surface. Two identical rods are driven into the ground at A and B, introducing an unknown resistance Ry. The procedure is as follows. Measure resistance R1 between points A and B, then connect A and B with a heavy conducting wire and measure resistance R2 between points A and C. (a) Derive an equation for Rx in terms of the observable resistances, R1 and R2. (b) A satisfactory ground resistance would be Rx 2.00 . Is the grounding of the station adequate if measurements give R1 = 13.0 and R2 = 6.00 ? Explain. Figure P21.71arrow_forwardIn the circuit of Figure P27.20, the current I1 = 3.00 A and the values of for the ideal battery and R are unknown. What are the currents (a) I2 and (b) I3? (c) Can you find the values of and R? If so, find their values. If not, explain. Figure P27.20arrow_forwardA battery has an emf of 15.0 V. The terminal voltage of the battery is 11.6 V when it is delivering 20.0 W of power to an external load resistor R. (a) What is the value of R? (b) What is the internal resistance of the battery?arrow_forward
- Figure P29.46 shows a circuit with a 12.0-V battery connected to four resistors. How much power is delivered to each resistor?arrow_forwardUnreasonable Results (a) What current is needed to transmit 1.00 102 MW of power at 10.0kV? (b) Find the resistance of 1.00 km of wire that would cause a 0.0100% power loss. (c) What is the diameter of a 1.00-km-long copper wire having this resistance? (d) What is unreasonable about these results? (e) Which assumptions are unreasonable, or which premises are inconsistent?arrow_forwardA 400 µF capacitor is connected through a resistor to a battery. Find (a) the resistance R and (b) the emf of the battery if the time constant of the circuit is 0.5 s and the maximum charge on the capacitor is 0.024 C. O a. R = 1350 0, e = 80 V O b. R = 1250 0, E = 60 V O C. R = 1200 Q, e = 80 V O d. R = 1150 Q, e = 60 Varrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Circuits, Voltage, Resistance, Current - Physics 101 / AP Physics Review with Dianna Cowern; Author: Physics Girl;https://www.youtube.com/watch?v=q8X2gcPVwO0;License: Standard YouTube License, CC-BY