Concept explainers
(a)
To show that the first term in the Schrodinger equation reduces to the kinetic energy of the quantum particle multiplies by the wavefunction for a freely moving particle with the wave function
(a)
Answer to Problem 54P
It is showed that the first term in the Schrodinger equation reduces to the kinetic energy of the quantum particle multiplies by the wavefunction for a freely moving particle with the wave function
Explanation of Solution
Write the Schrodinger’s equation.
Here,
Write the statement to be proved.
Here,
Write the expression of the given wavefunction.
Here,
Put equation (III) in equation (II).
Take the derivative equation (III) with respect to
Take the derivative of the above equation with respect to
Put equations (V) in the left-hand side of equation (II) and rearrange it.
Write the equation for the reduced Planck’s constant.
Here,
Write the equation for the wave vector.
Here,
Put equation (VII) and (VIII) in (VI).
Write the equation for the de Broglie wavelength.
Here,
Rewrite the above equation for
Put the above equation in equation (IX).
Write the equation for kinetic energy.
Put the above equation in equation (XI).
Conclusion:
Equation (XIII) is exactly the same as equation (IV) which has to be proved.
Thus, it is showed that the first term in the Schrodinger equation reduces to the kinetic energy of the quantum particle multiplies by the wavefunction for a freely moving particle with the wave function
(b)
To show that the first term in the Schrodinger equation reduces to the kinetic energy of the quantum particle multiplies by the wavefunction for a particle in a box with the wave function
(b)
Answer to Problem 54P
It is showed that the first term in the Schrodinger equation reduces to the kinetic energy of the quantum particle multiplies by the wavefunction for a particle in a box with the wave function
Explanation of Solution
Write the expression of the given wavefunction.
Put equation (XIV) in equation (II).
Take the derivative equation (XIV) with respect to
Take the derivative of the above equation with respect to
Put the above equation in the left-hand side of equation (XV) and rearrange it.
Put equation (VII) and (VIII) in the above equation.
Put equation (X) in the above equation.
Put equation (XII) in the above equation.
Conclusion:
Equation (XVI) is exactly the same as equation (XV) which has to be proved.
Thus, it is showed that the first term in the Schrodinger equation reduces to the kinetic energy of the quantum particle multiplies by the wavefunction for a particle in a box with the wave function
Want to see more full solutions like this?
Chapter 28 Solutions
Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
- 3. A measurement taken from the UW Jacobson Observatory (Latitude: 47.660503°, Longitude: -122.309424°, Altitude: 220.00 feet) when its local sidereal time is 120.00° makes the following observations of a space object (Based on Curtis Problems 5.12 + 5.13): Azimuth: 225.00° Azimuth rate: 2.0000°/s. Elevation: 75.000° Elevation rate: -0.5000°/s Range: 1500.0 km Range rate: -1.0000 km/s a. What are the r & v vectors (the state vector) in geocentric coordinates? (Answer r = [-2503.47 v = [17.298 4885.2 5.920 5577.6] -2.663]) b. Calculate the orbital elements of the satellite. (For your thoughts: what type of object would this be?) (Partial Answer e = 5.5876, 0=-13.74°) Tip: use Curtis algorithms 5.4 and 4.2.arrow_forwardConsider an isotope with an atomic number of (2(5+4)) and a mass number of (4(5+4)+2). Using the atomic masses given in the attached table, calculate the binding energy per nucleon for this isotope. Give your answer in MeV/nucleon and with 4 significant figures.arrow_forwardA: VR= 2.4 cm (0.1 V/cm) = 0.24 V What do Vector B an C represent and what are their magnitudesarrow_forward
- 4. Consider a cubesat that got deployed below the ISS and achieved a circular orbit of 410 km altitude with an inclination of 51.600°. What is the spacing, in kilometers, between successive ground tracks at the equator: a. Ignoring J2 (Earth's oblateness) effects b. Accounting for J2 effects c. Compare the two results and comment [Partial Answer: 35.7km difference]arrow_forwardplease solve and explainarrow_forwardTwo ice skaters, both of mass 68 kgkg, approach on parallel paths 1.6 mm apart. Both are moving at 3.0 m/sm/s with their arms outstretched. They join hands as they pass, still maintaining their 1.6 mm separation, and begin rotating about one another. Treat the skaters as particles with regard to their rotational inertia. a) What is their common angular speed after joining hands? Express your answer in radians per second. b) Calculate the change in kinetic energy for the process described in a). Express your answer with the appropriate units. c) If they now pull on each other’s hands, reducing their radius to half its original value, what is their common angular speed after reducing their radius? Express your answer in radians per second. d) Calculate the change in kinetic energy for the process described in part c). Express your answer with the appropriate units.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning