Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
5th Edition
ISBN: 9781133422013
Author: Raymond A. Serway; John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 28, Problem 48P
To determine
The situation which is impossible.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Photon in a Dye Laser. An electron in a long, organic molecule used in a dye laser behaves approximately like a particle in a box with width 4.18 nm. What is the wavelength of the photon emitted when the electron undergoes a transition (a) from the first excited level to the ground level and (b) from the second excited level to the first excited level?
An electron moves with a speed v 1.25 x 10-4c inside a one-dimensional box (V = 0) of length 48.5 nm. The potential is infi nite elsewhere. The particle may not escape the box. What approximate quantum number does the electron have?
Is the following situation possible? A proton is in an infinitely deep potential well of length 1.00 nm. It absorbs a microwave photon of wavelength 6.06 mm and is excited into the next available quantum state. Justify your answer.
Chapter 28 Solutions
Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
Ch. 28.1 - Prob. 28.1QQCh. 28.2 - Prob. 28.2QQCh. 28.2 - Prob. 28.3QQCh. 28.2 - Prob. 28.4QQCh. 28.5 - Prob. 28.5QQCh. 28.5 - Prob. 28.6QQCh. 28.6 - Prob. 28.7QQCh. 28.10 - Prob. 28.8QQCh. 28.10 - Prob. 28.9QQCh. 28.13 - Prob. 28.10QQ
Ch. 28 - Prob. 1OQCh. 28 - Prob. 2OQCh. 28 - Prob. 3OQCh. 28 - Prob. 4OQCh. 28 - Prob. 5OQCh. 28 - Prob. 6OQCh. 28 - Prob. 7OQCh. 28 - Prob. 8OQCh. 28 - Prob. 9OQCh. 28 - Prob. 10OQCh. 28 - Prob. 11OQCh. 28 - Prob. 12OQCh. 28 - Prob. 13OQCh. 28 - Prob. 14OQCh. 28 - Prob. 15OQCh. 28 - Prob. 16OQCh. 28 - Prob. 17OQCh. 28 - Prob. 18OQCh. 28 - Prob. 1CQCh. 28 - Prob. 2CQCh. 28 - Prob. 3CQCh. 28 - Prob. 4CQCh. 28 - Prob. 5CQCh. 28 - Prob. 6CQCh. 28 - Prob. 7CQCh. 28 - Prob. 8CQCh. 28 - Prob. 9CQCh. 28 - Prob. 10CQCh. 28 - Prob. 11CQCh. 28 - Prob. 12CQCh. 28 - Prob. 13CQCh. 28 - Prob. 14CQCh. 28 - Prob. 15CQCh. 28 - Prob. 16CQCh. 28 - Prob. 17CQCh. 28 - Prob. 18CQCh. 28 - Prob. 19CQCh. 28 - Prob. 20CQCh. 28 - Prob. 1PCh. 28 - Prob. 2PCh. 28 - Prob. 3PCh. 28 - Prob. 4PCh. 28 - Prob. 6PCh. 28 - Prob. 7PCh. 28 - Prob. 8PCh. 28 - Prob. 9PCh. 28 - Prob. 10PCh. 28 - Prob. 11PCh. 28 - Prob. 13PCh. 28 - Prob. 14PCh. 28 - Prob. 15PCh. 28 - Prob. 16PCh. 28 - Prob. 17PCh. 28 - Prob. 18PCh. 28 - Prob. 19PCh. 28 - Prob. 20PCh. 28 - Prob. 21PCh. 28 - Prob. 22PCh. 28 - Prob. 23PCh. 28 - Prob. 24PCh. 28 - Prob. 25PCh. 28 - Prob. 26PCh. 28 - Prob. 27PCh. 28 - Prob. 29PCh. 28 - Prob. 30PCh. 28 - Prob. 31PCh. 28 - Prob. 32PCh. 28 - Prob. 33PCh. 28 - Prob. 34PCh. 28 - Prob. 35PCh. 28 - Prob. 36PCh. 28 - Prob. 37PCh. 28 - Prob. 38PCh. 28 - Prob. 39PCh. 28 - Prob. 40PCh. 28 - Prob. 41PCh. 28 - Prob. 42PCh. 28 - Prob. 43PCh. 28 - Prob. 44PCh. 28 - Prob. 45PCh. 28 - Prob. 46PCh. 28 - Prob. 47PCh. 28 - Prob. 48PCh. 28 - Prob. 49PCh. 28 - Prob. 50PCh. 28 - Prob. 51PCh. 28 - Prob. 52PCh. 28 - Prob. 53PCh. 28 - Prob. 54PCh. 28 - Prob. 55PCh. 28 - Prob. 56PCh. 28 - Prob. 57PCh. 28 - Prob. 58PCh. 28 - Prob. 59PCh. 28 - Prob. 60PCh. 28 - Prob. 61PCh. 28 - Prob. 62PCh. 28 - Prob. 63PCh. 28 - Prob. 64PCh. 28 - Prob. 65PCh. 28 - Prob. 66PCh. 28 - Prob. 67PCh. 28 - Prob. 68PCh. 28 - Prob. 69PCh. 28 - Prob. 70PCh. 28 - Prob. 71PCh. 28 - Prob. 72PCh. 28 - Prob. 73PCh. 28 - Prob. 74P
Knowledge Booster
Similar questions
- A beam of electrons is incident on a barrier that is 0.60 nm wide and 6.40 eV high. If the number of electrons striking the barrier each second is 6.50 ✕ 1021 /s with an energy of 5.35 eV, then how long would it take for a single electron to be transmitted through the barrier?arrow_forwardIn your research on new solid-state devices, you are studying a solid-state structure that can be modeled accurately as an electron in a one-dimensional infinite potential well (box) of width L. In one of your experiments, electromagnetic radiation is absorbed in transitions in which the initial state is the n = 1 ground state. You measure that light of frequency f = 9.0x 1014 Hz is absorbed and that the next higher absorbed frequency is 16.9 x 1014 Hz. (a) What is quantum number n for the final state in each of the transitions that leads to the absorption of photons of these frequencies? (b) What is the width L of the potential well? (c) What is the longest wavelength in air of light that can be absorbed by an electron if it is initially in the n = 1 state?arrow_forwardWhen an electron in a one-dimensional box makes a transition from the n = 1 energy level to the n = 2 level, it absorbs a photon of wavelength 426 nm. What is the wavelength of that photon when the electron undergoes a transition (a) from the n = 2 to the n = 3 energy level and (b) from the n = 1 to the n = 3 energy level? (c) What is the width L of the box?arrow_forward
- The energy of a proton is 1.0 MeV below the top of a 6.8-fm-wide energy barrier. What is the probability that the proton will tunnel through the barrier? (1 eV = 1.60 × 10-19 J, mproton = 1.67 × 10-27 kg, ħ = 1.055 × 10-34 J ∙ s, h = 6.626 × 10-34 J ∙ s)arrow_forwardAn electron confined in a box of width 0.360nm makes a transition from the n = 1 to n = 4 level by absorbing a photon. Calculate the wavelength of this photon.arrow_forwardIn class, we derived the formula for the power radiated by an accelerating charge. The classical model of the Hydrogen atom treats the electron as a point charge moving in a circular orbit about the inertial proton. In its ground state, the kinetic energy of this electron is 13.6 eV, and it’s radius is equal to the Bohr radius a0 = 0.0529 nm. If this electron behaves classically, what fraction of its energy does it radiate per orbit? Per second?arrow_forward
- An electron is trapped in an infinitely deep one-dimensional well of width 0,251 nm. Initially the electron occupies the n=4 state. Suppose the electron jumps to the ground state with the accompanying emission of photon. What is the energy of the photon?arrow_forwardAn electron in an infinite potential well (a box) makes a transition from the n = 3 level to the ground state and, in doing so, emits a photon with a wavelength of 20.9 nm. (a) How wide is this well? (b) What wavelength of the photon would it take to excite the electron from its original level to the next higher level?arrow_forwardAn electron with a kinetic energy of 44.34 eV is incident on a square barrier with Up = 57.43 eV and w = 2.200 nm. What is the probability that the electron tunnels through the barrier? (Use 6.626 x 1034 j x S for h, 9.109 x 1031 kg for the mass of an electron, and 1.60 x 1019 C for the charge of an electron.)arrow_forward
- A particle is in the n = 9 excited state of a quantum simple harmonic oscillator well. A photon with a frequency of 3.95 x 1015 Hz is emitted as the particle moves to the n = 7 excited state. What is the minimum photon frequency required for this particle to make a quantum jump from the ground state of this well to the n = 8 excited state? (Give your answer in Hz.)arrow_forwardYou are studying the absorption of electromagnetic radiation by electrons in a crystal structure. The situation is well described by an electron in a cubical box of side length L.The electron is initially in the ground state. You observe that the longest-wavelength photon that is absorbed has a wavelength in air of l = 624 nm. What is L?arrow_forwardPart A The electron in a hydrogen atom spends most of its time 0.53 x 10-10 m from the nucleus, whose radius is about 0.88 x 10-15 m. If each dimension of this atom was increased by the same factor and the radius of the nucleus was increased to the size of a tennis ball, how far from the nucleus would the electron be? Assume that the radius of a tennis ball is 3.0 cm. Express your answer with the appropriate units. Templates Symbols undo redo reset keyboard shortcuts help Value Unitsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning