Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
5th Edition
ISBN: 9781133422013
Author: Raymond A. Serway; John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 28, Problem 11OQ
To determine
The correct option which most likely causes sunburn by delivering more energy to individual molecules in skin cells.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
NASA is giving serious consideration to the concept of solar sailing. A solar sailcraft uses a large, low-mass sail and the energy and momentum of sunlight for propulsion. (a) Should the sail be absorbing or reflective? Why? (b) The total power output of the sun is 3.9 x 1026 W. How large a sail is necessary to propel a 10,000 kg spacecraft against the gravitational force of the sun? Express your result in square kilometers. (c) Explain why your answer to part (b) is independent of the distance from the sun.
NASA is giving serious consideration to the concept of solar sailing. A solar sailcraft uses a large, low-mass sail and the energy and momentum of sunlight for propulsion. (a) Should the sail be absorbing or reflective? Why? (b) The total power output of the sun is 3.9 * 10^26 W. How large a sail is necessary to propel a 10,000 kg spacecraft against the gravitational force of the sun? Express your result in square kilometers. (c) Explain why your answer to part (b) is independent of the distance from the sun.
There are two categories of ultraviolet light. Ultraviolet A (UVA) has a wavelength ranging from 320 nm to 400 nm. It is not so harmful to the skin and is necessary for the production of vitamin D. UVB, with a wavelength in vacuum between 280 nm and 320 nm, is more dangerous because it is much more likely to cause skin cancer.
(a) Find the frequency ranges of UVA and UVB.
(b) What are the ranges of the wave numbers for UVA and UVB?
Chapter 28 Solutions
Bundle: Principles of Physics: A Calculus-Based Text, 5th + WebAssign Printed Access Card for Serway/Jewett's Principles of Physics: A Calculus-Based Text, 5th Edition, Multi-Term
Ch. 28.1 - Prob. 28.1QQCh. 28.2 - Prob. 28.2QQCh. 28.2 - Prob. 28.3QQCh. 28.2 - Prob. 28.4QQCh. 28.5 - Prob. 28.5QQCh. 28.5 - Prob. 28.6QQCh. 28.6 - Prob. 28.7QQCh. 28.10 - Prob. 28.8QQCh. 28.10 - Prob. 28.9QQCh. 28.13 - Prob. 28.10QQ
Ch. 28 - Prob. 1OQCh. 28 - Prob. 2OQCh. 28 - Prob. 3OQCh. 28 - Prob. 4OQCh. 28 - Prob. 5OQCh. 28 - Prob. 6OQCh. 28 - Prob. 7OQCh. 28 - Prob. 8OQCh. 28 - Prob. 9OQCh. 28 - Prob. 10OQCh. 28 - Prob. 11OQCh. 28 - Prob. 12OQCh. 28 - Prob. 13OQCh. 28 - Prob. 14OQCh. 28 - Prob. 15OQCh. 28 - Prob. 16OQCh. 28 - Prob. 17OQCh. 28 - Prob. 18OQCh. 28 - Prob. 1CQCh. 28 - Prob. 2CQCh. 28 - Prob. 3CQCh. 28 - Prob. 4CQCh. 28 - Prob. 5CQCh. 28 - Prob. 6CQCh. 28 - Prob. 7CQCh. 28 - Prob. 8CQCh. 28 - Prob. 9CQCh. 28 - Prob. 10CQCh. 28 - Prob. 11CQCh. 28 - Prob. 12CQCh. 28 - Prob. 13CQCh. 28 - Prob. 14CQCh. 28 - Prob. 15CQCh. 28 - Prob. 16CQCh. 28 - Prob. 17CQCh. 28 - Prob. 18CQCh. 28 - Prob. 19CQCh. 28 - Prob. 20CQCh. 28 - Prob. 1PCh. 28 - Prob. 2PCh. 28 - Prob. 3PCh. 28 - Prob. 4PCh. 28 - Prob. 6PCh. 28 - Prob. 7PCh. 28 - Prob. 8PCh. 28 - Prob. 9PCh. 28 - Prob. 10PCh. 28 - Prob. 11PCh. 28 - Prob. 13PCh. 28 - Prob. 14PCh. 28 - Prob. 15PCh. 28 - Prob. 16PCh. 28 - Prob. 17PCh. 28 - Prob. 18PCh. 28 - Prob. 19PCh. 28 - Prob. 20PCh. 28 - Prob. 21PCh. 28 - Prob. 22PCh. 28 - Prob. 23PCh. 28 - Prob. 24PCh. 28 - Prob. 25PCh. 28 - Prob. 26PCh. 28 - Prob. 27PCh. 28 - Prob. 29PCh. 28 - Prob. 30PCh. 28 - Prob. 31PCh. 28 - Prob. 32PCh. 28 - Prob. 33PCh. 28 - Prob. 34PCh. 28 - Prob. 35PCh. 28 - Prob. 36PCh. 28 - Prob. 37PCh. 28 - Prob. 38PCh. 28 - Prob. 39PCh. 28 - Prob. 40PCh. 28 - Prob. 41PCh. 28 - Prob. 42PCh. 28 - Prob. 43PCh. 28 - Prob. 44PCh. 28 - Prob. 45PCh. 28 - Prob. 46PCh. 28 - Prob. 47PCh. 28 - Prob. 48PCh. 28 - Prob. 49PCh. 28 - Prob. 50PCh. 28 - Prob. 51PCh. 28 - Prob. 52PCh. 28 - Prob. 53PCh. 28 - Prob. 54PCh. 28 - Prob. 55PCh. 28 - Prob. 56PCh. 28 - Prob. 57PCh. 28 - Prob. 58PCh. 28 - Prob. 59PCh. 28 - Prob. 60PCh. 28 - Prob. 61PCh. 28 - Prob. 62PCh. 28 - Prob. 63PCh. 28 - Prob. 64PCh. 28 - Prob. 65PCh. 28 - Prob. 66PCh. 28 - Prob. 67PCh. 28 - Prob. 68PCh. 28 - Prob. 69PCh. 28 - Prob. 70PCh. 28 - Prob. 71PCh. 28 - Prob. 72PCh. 28 - Prob. 73PCh. 28 - Prob. 74P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Consider six proposed properties of electromagnetic radiation: wave speeds of 3.00 x 10° km/s and 3.00 x 10°m/s, wavelengths of 563 nm and 0.193 nm, and frequencies of 2.15 x 1018 Hz and 6.26 x 1014 Hz. Place these according to whether they apply only to the X-ray band, only to the visible light band, to both bands, or to neither band. X-ray band only Visible light band only Both bands Neither band Answer Bank frequency of 6.26 × 1014 Hz. speed of 3.00 x 10* m/s speed of 3.00 x 10* km/s frequency of 2.15 × 10'8 Hz wavelength of 0.193 nm wavelength of 563 nmarrow_forwardA possible means of space flight is to place a perfectly reflecting aluminized sheet into orbit around the Earth and then use the light from the Sun to push this "solar sail." Suppose a sail of area A = 6.40 ✕ 105 m2 and mass m = 4,900 kg is placed in orbit facing the Sun. Ignore all gravitational effects and assume a solar intensity of 1,370 W/m2. A) If the solar sail were initially in Earth orbit at an altitude of 360 km, show that a sail of this mass density could not escape Earth's gravitational pull regardless of size. (Calculate the magnitude of the gravitational field in m/s2.) B) What would the mass density (in kg/m2) of the solar sail have to be for the solar sail to attain the same initial acceleration of 1193 µm/s2.arrow_forwardIf all else is the same, for which surface would the radiationpressure from light be the greatest?(a) A black surface.(b) A gray surface.(c) A yellow surface.(d) A white surface.(e) All experience the same radiation pressure, becausethey are exposed to the same light.arrow_forward
- A possible means of space flight is to place a perfectly reflecting aluminized sheet into orbit around the Earth and then use the light from the Sun to push this "solar sail." Suppose a sail of area A = 5.20 ✕ 105 m2 and mass m = 6,800 kg is placed in orbit facing the Sun. Ignore all gravitational effects and assume a solar intensity of 1,370 W/m2. (d) What If? If the solar sail were initially in Earth orbit at an altitude of 300 km, show that a sail of this mass density could not escape Earth's gravitational pull regardless of size. (Calculate the magnitude of the gravitational field in m/s2.) m/s2 (e) What would the mass density (in kg/m2) of the solar sail have to be for the solar sail to attain the same initial acceleration as that in part (b)? kg/m2arrow_forwardConsider six proposed properties of electromagnetic radiation: wave speeds of 3.00 x 10° km/s and 3.00 × 10³m/s, wavelengths of 423 nm and 0.281 nm, and frequencies of 2.03 × 1018 Hz and 7.49 x 1014 Hz. Place these according to whether they apply only to the X-ray band, only to the visible light band, to both bands, or to neither band. X-ray band only Visible light band only Both bands Neither band Answer Bank frequency of 2.03 × 1018 Hz frequency of 7.49 × 1014 Hz wavelength of 0.281 nm wavelength of 423 nm speed of 3.00 x 10® km/s speed of 3.00 × 10³ m/sarrow_forwardConsider six proposed properties of electromagnetic radiation: wave speeds of 3.00 x 10° km/s and 3.00 x 10°m/s, wavelengths of 403 nm and 0.123 nm, and frequencies of 3.01 x 10 Hz and 6.60 x 1014 Hz. Place these according to whether they apply only to the X-ray band, only to the visible light band, to both bands, or to neither band. X-ray band only Visible light band only Both bands Neither band Answer Bank wavclength of 403 nm speed of 3.00 x 10 km/s frequency of 3.0o1 x 10 Hz speed of 3.00 x 10 m/s frequency of 6.60 x 104 Hz wavelength of 0.123 nmarrow_forward
- (a) Calculate the wavelength of light in vacuum that has a frequency of 5.06 x 10 18 nm (b) What is its wavelength in flint glass? nm (c) Calculate the energy of one photon of such light in vacuum. Express the answer in electron volts. eV (d) Does the energy of the photon change when it enters the flint glass? The energy of the photon changes. The energy of the photon does not change. Hz. Explain.arrow_forwardAn x-ray tube is operated at 48900 V. Calculate the minimum wavelength of the radiation emitted by this tube. If this radiation is directed at a crystal, the first-order maximum in the reflected radiation occurs when the angle of incidence is 2.93o. What is the spacing between reflecting planes in the crystal?arrow_forward(a) Calculate the wavelength of light in vacuum that has a frequency of 5.37 x 10¹5 Hz. nm (b) What is its wavelength in ethyl alcohol? nm (c) Calculate the energy of one photon of such light in vacuum. Express the answer in electron volts. eV (d) Does the energy of the photon change when it enters the ethyl alcohol? O The energy of the photon changes. O The energy of the photon does not change. Explain.arrow_forward
- Oxygenated hemoglobin absorbs weakly in the red (hence its red color) and strongly in the near infrared, whereas deoxygenated hemoglobin has the opposite absorption. This fact is used in a “pulse oximeter” to measure oxygen saturation in arterial blood. The device clips onto a person’s finger and has two light emitting diodes (i.e., LEDs) – a red (660nm) and an infrared (940nm) – and a photocell that detects the amount of light transmitted through the finger at each wavelength a)Determine the frequency of each of these light sources. b)If the intensity of the beams is 1.00X10-6 Watts/m2 , calculate the peak electric and magnetic fields of the light supplied by the LEDs.arrow_forwardThe photoelectric effect can be used in engineering designs for practical applications. For example, infrared goggles used in night-vision applications have materials that give an electrical signal with exposure to the relatively long wavelength of IR light. If the energy needed for signal generation is 6.4 x 10-20 J, what is the minimum wavelength? What is the frequency of light that can be detected? c = 2.998 x 10° m/s h = 6.626 x 10-34 J s s-1 Submit Answer Retry Entire Group No more group attempts remainarrow_forwardA low-cost way of sending spacecraft to other planets would be to use the radiation-pressure on a solar sail. The intensity of the sun's electromagnetic radiation at distances near the earth's orbit is about 1,320 W/m². What size sail (in km²) would be needed to accelerate a 6,906 kg space craft toward Mars at 0.024 m/s²? Assume that the solar sail is perfectly reflecting. (Use c = 2.9979 × 108 m/s) km²arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning