Webassign Printed Access Card For Serway/jewett's Physics For Scientists And Engineers, 10th, Single-term
Webassign Printed Access Card For Serway/jewett's Physics For Scientists And Engineers, 10th, Single-term
10th Edition
ISBN: 9781337699266
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 28, Problem 38AP

Figure 28.11 shows a charged particle traveling in a nonuniform magnetic field forming a magnetic bottle. (a) Explain why the positively charged particle in the figure must be moving clockwise when viewed from the right of the figure. The particle travels along a helix whose radius decreases and whose pitch decreases as the particle moves into a stronger magnetic field. If the particle is moving to the right along the x axis, its velocity in this direction will be reduced to zero and it will be reflected from the right-hand side of the bottle, acting as a “magnetic mirror. ” The particle ends up bouncing back and forth between the ends of the bottle. (b) Explain qualitatively why the axial velocity is reduced to zero as the particle moves into the region of strong magnetic field at the end of the bottle. (c) Explain why the tangential velocity increases as the particle approaches the end of the bottle. (d) Explain why the orbiting particle has a magnetic dipole moment.

Blurred answer
Students have asked these similar questions
4.) The diagram shows the electric field lines of a positively charged conducting sphere of radius R and charge Q. A B Points A and B are located on the same field line. A proton is placed at A and released from rest. The magnitude of the work done by the electric field in moving the proton from A to B is 1.7×10-16 J. Point A is at a distance of 5.0×10-2m from the centre of the sphere. Point B is at a distance of 1.0×10-1 m from the centre of the sphere. (a) Explain why the electric potential decreases from A to B. [2] (b) Draw, on the axes, the variation of electric potential V with distance r from the centre of the sphere. R [2] (c(i)) Calculate the electric potential difference between points A and B. [1] (c(ii)) Determine the charge Q of the sphere. [2] (d) The concept of potential is also used in the context of gravitational fields. Suggest why scientists developed a common terminology to describe different types of fields. [1]
3.) The graph shows how current I varies with potential difference V across a component X. 904 80- 70- 60- 50- I/MA 40- 30- 20- 10- 0+ 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 VIV Component X and a cell of negligible internal resistance are placed in a circuit. A variable resistor R is connected in series with component X. The ammeter reads 20mA. 4.0V 4.0V Component X and the cell are now placed in a potential divider circuit. (a) Outline why component X is considered non-ohmic. [1] (b(i)) Determine the resistance of the variable resistor. [3] (b(ii)) Calculate the power dissipated in the circuit. [1] (c(i)) State the range of current that the ammeter can measure as the slider S of the potential divider is moved from Q to P. [1] (c(ii)) Describe, by reference to your answer for (c)(i), the advantage of the potential divider arrangement over the arrangement in (b).
1.) Two long parallel current-carrying wires P and Q are separated by 0.10 m. The current in wire P is 5.0 A. The magnetic force on a length of 0.50 m of wire P due to the current in wire Q is 2.0 × 10-s N. (a) State and explain the magnitude of the force on a length of 0.50 m of wire Q due to the current in P. [2] (b) Calculate the current in wire Q. [2] (c) Another current-carrying wire R is placed parallel to wires P and Q and halfway between them as shown. wire P wire R wire Q 0.05 m 0.05 m The net magnetic force on wire Q is now zero. (c.i) State the direction of the current in R, relative to the current in P.[1] (c.ii) Deduce the current in R. [2]

Chapter 28 Solutions

Webassign Printed Access Card For Serway/jewett's Physics For Scientists And Engineers, 10th, Single-term

Ch. 28 - A proton moves perpendicular to a uniform magnetic...Ch. 28 - An accelerating voltage of 2.50103 V is applied to...Ch. 28 - A proton (charge + e, mass mp), a deuteron (charge...Ch. 28 - Review. A 30.0-g metal hall having net charge Q =...Ch. 28 - Review. One electron collides elastically with a...Ch. 28 - Review. One electron collides elastically with a...Ch. 28 - Review. An electron moves in a circular path...Ch. 28 - A cyclotron designed to accelerate protons has a...Ch. 28 - Prob. 15PCh. 28 - Singly charged uranium-238 ions are accelerated...Ch. 28 - A cyclotron (Fig. 28.16) designed to accelerate...Ch. 28 - A particle in the cyclotron shown in Figure 28.16a...Ch. 28 - Prob. 19PCh. 28 - A straight wire earning a 3.00-A current is placed...Ch. 28 - A wire carries a steady current of 2.40 A. A...Ch. 28 - Why is the following situation impossible? Imagine...Ch. 28 - Review. A rod of mass 0.720 kg and radius 6.00 cm...Ch. 28 - Review. A rod of mass m and radius R rests on two...Ch. 28 - A wire having a mass per unit length of 0.500 g/cm...Ch. 28 - Consider the system pictured in Figure P28.26. A...Ch. 28 - A strong magnet is placed under a horizontal...Ch. 28 - In Figure P28.28, the cube is 40.0 cm on each...Ch. 28 - A magnetized sewing needle has a magnetic moment...Ch. 28 - A 50.0-turn circular coil of radius 5.00 cm can be...Ch. 28 - You are in charge of planning a physics magic show...Ch. 28 - You are working in your dream job: an assistant...Ch. 28 - A rectangular coil consists of N = 100 closely...Ch. 28 - A rectangular loop of wire has dimensions 0.500 m...Ch. 28 - A wire is formed into a circle having a diameter...Ch. 28 - A Hall-effect probe operates with a 120-mA...Ch. 28 - Prob. 37APCh. 28 - Figure 28.11 shows a charged particle traveling in...Ch. 28 - Within a cylindrical region of space of radius 100...Ch. 28 - Prob. 40APCh. 28 - Prob. 41APCh. 28 - (a) A proton moving with velocity v=ii experiences...Ch. 28 - A proton having an initial velocity of 20.0iMm/s...Ch. 28 - You have been called in as an expert witness in a...Ch. 28 - Prob. 45APCh. 28 - Why is the following situation impossible? Figure...Ch. 28 - A heart surgeon monitors the flow rate of blood...Ch. 28 - Review. (a) Show that a magnetic dipole in a...Ch. 28 - Consider an electron orbiting a proton and...Ch. 28 - Protons having a kinetic energy of 5.00 MeV (1 eV...Ch. 28 - Review. A wire having a linear mass density of...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Text book image
University Physics Volume 2
Physics
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY