College Physics
College Physics
10th Edition
ISBN: 9781285737027
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 28, Problem 28P

(a)

To determine

The expression for the energy level of the sole remaining electron.

(a)

Expert Solution
Check Mark

Answer to Problem 28P

The expression for the energy level of the sole remaining electron is En=(122eV)n2.

Explanation of Solution

Formula to calculate the energy level is,

  En=Z2(13.6eV)n2

  • En is the nth energy level,
  • n is nth level
  • Z is the atomic number

Substitute 3 for Z to find En.

  En=(3)2(13.6eV)n2=(122eV)n2

Thus, expression for the energy level is (122eV)n2.

Conclusion:

Therefore, the expression for the energy level is (122eV)n2.

(b)

To determine

The energy for the level n=4.

(b)

Expert Solution
Check Mark

Answer to Problem 28P

The energy for the level n=4 is 7.63eV.

Explanation of Solution

Formula to calculate the energy level is,

  En=(122eV)n2

  • En is the nth energy level,
  • n is nth level

Substitute 4 for n to find En.

  E4=(122eV)(4)2=7.63eV

Thus, the energy for the level n=4 is 7.63eV.

Conclusion:

Therefore, the energy for the level n=4 is 7.63eV.

(c)

To determine

The energy for the level n=2.

(c)

Expert Solution
Check Mark

Answer to Problem 28P

The energy for the level n=2 is 30.5eV.

Explanation of Solution

Formula to calculate the energy level is,

  En=(122eV)n2

  • En is the nth energy level,
  • n is nth level

Substitute 2 for n to find En.

  E2=(122eV)(2)2=30.5eV

Thus, the energy for the level n=2 is 30.5eV.

Conclusion:

Therefore, the energy for the level n=2 is 30.5eV.

(d)

To determine

The energy of the photon for the transition from fourth level to second level.

(d)

Expert Solution
Check Mark

Answer to Problem 28P

the energy of the photon for the transition from fourth level to second level is 22.9eV or 3.66×1018J.

Explanation of Solution

Formula to calculate the energy difference is,

  Ephoton=(E4E2)

  • E2andE4 are the second and fourth level energy,
  • En is nth level energy

From unit conversion,

    1eV=1.6×1019J

Substitute (7.63eV) for E4, (30.5eV) for E2 to find Ephoton.

  Ephoton=[(7.63eV)(30.5eV)]=22.9eV=22.9eV×1.6×1019J1eV=3.66×1018J

Thus, the energy of the photon for the transition from fourth level to second level is 22.9eV or

3.66×1018J.

Conclusion:

Therefore, the energy of the photon for the transition from fourth level to second level is 22.9eV or 3.66×1018J.

(e)

To determine

The frequency and wavelength of the emitted photon.

(e)

Expert Solution
Check Mark

Answer to Problem 28P

The frequency and wavelength of the emitted photon is 5.52×1015Hz and 5.43×108m respectively.

Explanation of Solution

Formula to calculate the frequency of the photon is,

  f=Ephotonh

  • Ephoton is the photon energy
  • h is Planck’s constant

Substitute 3.66×1018J for Ephoton, 6.63×1034J-s for h to find f.

  f=(3.66×1018J)(6.63×1034J-s)=5.52×1015Hz

Formula to calculate the wavelength of the photon is,

  λ=cf

  • c is the speed of light
  • f is the frequency

Substitute 3×108m/s for c, 5.52×1015Hz for f to find λ.

  λ=3×108m/s5.52×1015Hz=5.43×108m

Thus, the frequency and wavelength of the emitted photon is 5.52×1015Hz and 5.43×108m respectively.

Conclusion:

Therefore, the frequency and wavelength of the emitted photon is 5.52×1015Hz and 5.43×108m respectively.

(f)

To determine

The wavelength belongs to in which spectrum.

(f)

Expert Solution
Check Mark

Answer to Problem 28P

The wavelength belongs to in which spectrum is deep ultraviolet region.

Explanation of Solution

The wavelength of the photon for the transition is 5.43×108m. So, this wavelength belongs to deep ultraviolet region.

Thus, this wavelength belongs to deep ultraviolet region.

Conclusion:

Therefore, the wavelength belongs to deep ultraviolet region

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
ՍՈՈՒ XVirginia Western Community Coll x P Course Home X + astering.pearson.com/?courseld=13289599#/ Figure y (mm) x=0x = 0.0900 m All ✓ Correct For either the time for one full cycle is 0.040 s; this is the period. Part C - ON You are told that the two points x = 0 and x = 0.0900 m are within one wavelength of each other. If the wave is moving in the +x-direction, determine the wavelength. Express your answer to two significant figures and include the appropriate units. 0 t(s) λ = Value m 0.01 0.03 0.05 0.07 Copyright © 2025 Pearson Education Inc. All rights reserved. 日 F3 F4 F5 1775 % F6 F7 B F8 Submit Previous Answers Request Answer ? × Incorrect; Try Again; 3 attempts remaining | Terms of Use | Privacy Policy | Permissions | Contact Us | Cookie Settings 28°F Clear 4 9:23 PM 1/20/2025 F9 prt sc F10 home F11 end F12 insert delete 6 7 29 & * ( 8 9 0 t = back Ο
Part C Find the height yi from which the rock was launched. Express your answer in meters to three significant figures.                                     Learning Goal: To practice Problem-Solving Strategy 4.1 for projectile motion problems. A rock thrown with speed 12.0 m/s and launch angle 30.0 ∘ (above the horizontal) travels a horizontal distance of d = 19.0 m before hitting the ground. From what height was the rock thrown? Use the value g = 9.800 m/s2 for the free-fall acceleration.     PROBLEM-SOLVING STRATEGY 4.1 Projectile motion problems MODEL: Is it reasonable to ignore air resistance? If so, use the projectile motion model. VISUALIZE: Establish a coordinate system with the x-axis horizontal and the y-axis vertical. Define symbols and identify what the problem is trying to find. For a launch at angle θ, the initial velocity components are vix=v0cosθ and viy=v0sinθ. SOLVE: The acceleration is known: ax=0 and ay=−g. Thus, the problem becomes one of…
Phys 25
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Inquiry into Physics
Physics
ISBN:9781337515863
Author:Ostdiek
Publisher:Cengage