College Physics
College Physics
10th Edition
ISBN: 9781285737027
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
bartleby

Concept explainers

Question
Book Icon
Chapter 28, Problem 19P

(a)

To determine

The energy of the longest wavelength.

(a)

Expert Solution
Check Mark

Answer to Problem 19P

The energy of the longest wavelength is 1.889eV .

Explanation of Solution

Formula to calculate the energy of the photon of the longest wavelength is,

Ephoton=E3E2

  • E2andE3 are the energy of the second and third level
  • Ephoton is energy of the photon,

Substitute (1.512eV) for E3 , (3.401eV) for E2 to find Ephoton .

Ephoton=(1.512eV)(3.401eV)=1.889eV

Thus, the energy of the photon of the longest wavelength is 1.889eV .

Conclusion:

Therefore, the energy of the photon of the longest wavelength is 1.889eV .

(b)

To determine

The wavelength of the photon of the longest wavelength.

(b)

Expert Solution
Check Mark

Answer to Problem 19P

The wavelength of the longest wavelength is 6.58×107m .

Explanation of Solution

Formula to calculate the wavelength of the photon of the longest wavelength is,

λ=hcEphoton

  • h is the Planck’s constant
  • c is the speed of light
  • Ephoton is energy of the photon,

From unit conversion,

1eV=1.6×1019J

Substitute 6.63×1034J-s for h , 3×108m/s for c , 1.889eV for Ephoton to find λ .

λ=(6.63×1034J-s)(3×108m/s)(1.889eV)(1eV1.6×1019J)=6.58×107m

Thus, the wavelength of the photon of the longest wavelength is 6.58×107m .

Conclusion:

Therefore, the wavelength of the photon of the longest wavelength is 6.58×107m .

(c)

To determine

The energy of the shortest photon wavelength.

(c)

Expert Solution
Check Mark

Answer to Problem 19P

The energy of the shortest photon wavelength is 3.02eV .

Explanation of Solution

Formula to calculate the energy of the photon of the shortest wavelength is,

Ephoton=E6E2

  • E2andE6 are the energy of the second and sixth level
  • Ephoton is energy of the photon,

Substitute (0.378eV) for E6 , (3.401eV) for E2 to find Ephoton .

Ephoton=(0.378eV)(3.401eV)=3.02eV

Thus, the energy of the photon of the shortest wavelength is 3.02eV .

Conclusion:

Therefore, the energy of the photon of the shortest wavelength is 3.02eV .

(d)

To determine

The wavelength of the photon of the shortest wavelength.

(d)

Expert Solution
Check Mark

Answer to Problem 19P

The wavelength of the shortest wavelength is 4.12×107m .

Explanation of Solution

Formula to calculate the wavelength of the photon of the shortest wavelength is,

λ=hcEphoton

  • h is the Planck’s constant
  • c is the speed of light
  • Ephoton is energy of the photon,

From unit conversion,

1eV=1.6×1019J

Substitute 6.63×1034J-s for h , 3×108m/s for c , 3.02eV for Ephoton to find λ .

λ=(6.63×1034J-s)(3×108m/s)(3.02eV)(1eV1.6×1019J)=4.12×107m

Thus, the wavelength of the photon of the shortest wavelength is 4.12×107m .

Conclusion:

Therefore, the wavelength of the photon of the shortest wavelength is 4.12×107m .

(e)

To determine

The shortest possible wavelength in the Balmar series.

(e)

Expert Solution
Check Mark

Answer to Problem 19P

The shortest possible wavelength in the Balmar series is 3.66×107m .

Explanation of Solution

Section1:

To determine: The energy of the shortest possible wavelength.

Answer: The energy of the shortest possible wavelength. is 3.401eV .

Explanation:

Formula to calculate the energy of the photon of the shortest wavelength is,

Ephoton=EE2

  • E2andE are the energy of the second and infinite level
  • Ephoton is energy of the photon,

Substitute (0eV) for E , (3.401eV) for E2 to find Ephoton .

Ephoton=(0eV)(3.401eV)=3.401eV

Thus, the energy of the photon of the shortest wavelength is 3.401eV .

Section 2:

To determine: The shortest wavelength.

Answer: The shortest wavelength is 3.66×107m .

Explanation:

Formula to calculate the wavelength of the photon of the shortest wavelength is,

λ=hcEphoton

  • h is the Planck’s constant
  • c is the speed of light
  • Ephoton is energy of the photon,

From unit conversion,

1eV=1.6×1019J

Substitute 6.63×1034J-s for h , 3×108m/s for c , 3.401eV for Ephoton to find λ .

λ=(6.63×1034J-s)(3×108m/s)(3.4012eV)(1eV1.6×1019J)=3.66×107m

Thus, the shortest wavelength is 3.66×107m .

Conclusion:

Therefore, the shortest wavelength is 3.66×107m

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
4B. Four electrons are located on the corners of a square, one on each corner, with the sides of the square being 25 cm long. a) Draw a sketch of the scenario and use your sketch to b)  Determine the total force (magnitude and direction) on one of the electrons from the other three?
Portfolio Problem 3. A ball is thrown vertically upwards with a speed vo from the floor of a room of height h. It hits the ceiling and then returns to the floor, from which it rebounds, managing just to hit the ceiling a second time. Assume that the coefficient of restitution between the ball and the floor, e, is equal to that between the ball and the ceiling. Compute e.
Portfolio Problem 4. Consider two identical springs, each with natural length and spring constant k, attached to a horizontal frame at distance 2l apart. Their free ends are attached to the same particle of mass m, which is hanging under gravity. Let z denote the vertical displacement of the particle from the hori- zontal frame, so that z < 0 when the particle is below the frame, as shown in the figure. The particle has zero horizontal velocity, so that the motion is one dimensional along z. 000000 0 eeeeee (a) Show that the total force acting on the particle is X F-mg k-2kz 1 (1. l k. (b) Find the potential energy U(x, y, z) of the system such that U x = : 0. = O when (c) The particle is pulled down until the springs are each of length 3l, and then released. Find the velocity of the particle when it crosses z = 0.
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
Inquiry into Physics
Physics
ISBN:9781337515863
Author:Ostdiek
Publisher:Cengage
Text book image
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning