College Physics
10th Edition
ISBN: 9781285737027
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 28, Problem 22P
(a)
To determine
The number of different wavelengths would be observed in the emission spectrum.
(b)
To determine
The longest wavelength.
(c)
To determine
The longest wavelength belongs in which series.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An electron is in an infinite square well of width 2.0 nm. What is the wavelength of the emitted photon in nanometers as the electron transitions from the n=8 to the n=4 state? (h = 6.626 × 10-34 J ∙ s, mel = 9.11 × 10-31 kg, 1 eV = 1.60 × 10-19J). Please give your answer with no decimal places.
A) What is the least amount of energy, in electron volts, that must be given to a hydrogen atom which is initially in its ground level so that it can emit the HαHα line in the Balmer series?
Express your answer in electronvolts to three significant figures.
B) How many different possibilities of spectral-line emissions are there for this atom when the electron starts in the n = 3 level and eventually ends up in the ground level?
A hypothetical atom has two energy levels, with a transition wavelength between them of 580 nm. In a particular sample at 300 K, 4.0 * 10^20 such atoms are in the state of lower energy. (a) How many atoms are in the upper state, assuming conditions of thermal equilibrium? (b) Suppose, instead, that 3.0*10^20 of these atoms are “pumped” into the upper state by an external process, with 1.0 * 10^20 atoms remaining in the lower state. What is the maxi-mum energy that could be released by the atoms in a single laser pulse if each atom jumps once between those two states (either via absorption or via stimulated emission)?
Chapter 28 Solutions
College Physics
Ch. 28.3 - Prob. 28.1QQCh. 28.4 - Prob. 28.2QQCh. 28.5 - Prob. 28.3QQCh. 28 - Prob. 1CQCh. 28 - Prob. 2CQCh. 28 - Prob. 3CQCh. 28 - Prob. 4CQCh. 28 - Prob. 5CQCh. 28 - Prob. 6CQCh. 28 - Prob. 7CQ
Ch. 28 - Prob. 8CQCh. 28 - Prob. 9CQCh. 28 - Prob. 10CQCh. 28 - Prob. 11CQCh. 28 - Prob. 12CQCh. 28 - Prob. 13CQCh. 28 - Prob. 14CQCh. 28 - Prob. 15CQCh. 28 - Prob. 1PCh. 28 - Prob. 2PCh. 28 - Prob. 3PCh. 28 - Prob. 4PCh. 28 - Prob. 5PCh. 28 - Prob. 6PCh. 28 - Prob. 7PCh. 28 - Prob. 8PCh. 28 - Prob. 9PCh. 28 - Prob. 10PCh. 28 - Prob. 11PCh. 28 - Prob. 12PCh. 28 - Prob. 13PCh. 28 - Prob. 14PCh. 28 - Prob. 15PCh. 28 - Prob. 16PCh. 28 - Prob. 17PCh. 28 - Prob. 18PCh. 28 - Prob. 19PCh. 28 - Prob. 20PCh. 28 - Prob. 21PCh. 28 - Prob. 22PCh. 28 - Prob. 23PCh. 28 - Prob. 24PCh. 28 - Prob. 25PCh. 28 - Prob. 26PCh. 28 - Prob. 27PCh. 28 - Prob. 28PCh. 28 - Prob. 29PCh. 28 - Prob. 30PCh. 28 - Prob. 31PCh. 28 - Prob. 32PCh. 28 - Prob. 33PCh. 28 - Prob. 34PCh. 28 - Prob. 35PCh. 28 - Prob. 36PCh. 28 - Prob. 37PCh. 28 - Prob. 38PCh. 28 - Prob. 39PCh. 28 - Prob. 40PCh. 28 - Prob. 41PCh. 28 - Prob. 42PCh. 28 - Prob. 43PCh. 28 - Prob. 44PCh. 28 - Prob. 45PCh. 28 - Prob. 46APCh. 28 - Prob. 47APCh. 28 - Prob. 48APCh. 28 - Prob. 49APCh. 28 - Prob. 50APCh. 28 - Prob. 51APCh. 28 - Prob. 52APCh. 28 - Prob. 53APCh. 28 - Prob. 54AP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- What is the maximum photon wavelength that would free an electron in a hydrogen atom when it is in the n = 8 excited state? (Give the answer in meters.)arrow_forwardThe electrons within the T-system of conjugated hydrocarbons may be treated as particles confined within a one-dimensional box. The lowest energy transition in the spectrum of a polyene hydrocarbon corresponds to excitation of an electron from the highest occupied energy level to the lowest unoccupied level. If the hydrocarbon contains 6 electrons and has a spectral transition at a wavelength of 278 nm, estimate the effective length of the TT-system. The estimated length = nm. Hint: you will need to fill the energy diagram to know which energy levels are involved in the transition. me = 9.110 x 1031 kg (Enter in e-notation, e.g. 1.23e-4, tolerance ±5%)arrow_forwardPlease don't provide handwritten solution ... An electron in the n = 4 level of an H atom emits a photon of wavelength 97 nm. To what energy level does the electron move?arrow_forward
- please help as soon as possiblearrow_forwardThe Lyman series comprises a set of spectral lines. All of these lines involve a hydrogen atom whose electron undergoes a change in energy level, either beginning at the n = 1 level (in the case of an absorption line) or ending there (an emission line). The inverse wavelengths for the Lyman series in hydrogen are given by 1 - where n = 2, 3, 4, ... and the Rydberg constant R, = 1.097 x 10' m-. (Round your answers to at least one decimal place. Enter your answers in nm.) %3D (a) Compute the wavelength for the first line in this series (the line corresponding to n = 2). nm (b) Compute the wavelength for the second line in this series (the line corresponding to n = 3). nm (c) Compute the wavelength for the third line in this series (the line corresponding to n = 4). nm (d) In which part of the electromagnetic spectrum do these three lines reside? O x-ray region O ultraviolet region O infrared region O gamma ray region O visible light regionarrow_forwardAn electron is contained in a one-dimensional box of length 0.520 nm.(a) Draw an energy-level diagram for the electron for levels up to n = 4. (b) Photons are emitted by the electron making downward transitions that could eventually carry it from the n = 4 state to the n = 1 state. Find the wavelengths of all such photons (in nm). Please help!arrow_forward
- 3:09 O O O 63° A X • N N O 5G „ll Quizzes a (absorption) Brackett series Paschen series Lyman series (emission) Balmer series Paschen series (emission) n= 2 n=3 n=4 .... Lyman series n-5 (a) (b) e These pictures refer to the energy levels of a hydrogen atom. You can find the error in both parts, (a) and (b). The arrows labeled "emission" in (a), and all the arrows in (b), indicate a transition in which an electron jumps from a higher- energy state to a lower-energy state. The different "series" of emission lines are characterized by the index n of the low- energy state in which the electron ends up. In particular, the Lyman series consists of all transitions that end up in the n=1 energy level, with an initial energy level that corresponds to the label n = 2, 3, 4, 5, etc. One of these values of n is not shown as an arrow in the Lyman emission series in figures (a) or (b). This is a significant error because that particular spectral line is very important in astronomy. Pick the value…arrow_forwardWhat is the wavelength of the hydrogen Balmer Series photon for m=4 and n=2 using the Rydberg forumla?arrow_forwardSingly ionized helium has a single orbiting electron, so the mathematicsof the Bohr hydrogen atom will apply, with one important difference: The charge of the nucleus is twice that of the single proton at the center of a hydrogen atom. This changes the energy levels; the magnitude of each energy is greater than the corresponding Bohr level by a factor of 22 = 4: The Balmer and Lyman series of spectral lines in hydrogen have analogs in singly ionized helium, but at shorter wavelengths; the photons corresponding to these transitions are beyond the visiblelight spectrum. The transitions that end on the n = 4 state produce a set of spectral lines called the Pickering series. The visible-light lines in this series were first seen in the light from certain hot stars, but some of the lines overlap the hydrogen Balmer series lines, so these lines were initially missed. This led to an initial mischaracterization of the source of the lines. The longest wavelength in the hydrogen Balmer series…arrow_forward
- Singly ionized helium has a single orbiting electron, so the mathematicsof the Bohr hydrogen atom will apply, with one important difference: The charge of the nucleus is twice that of the single proton at the center of a hydrogen atom. This changes the energy levels; the magnitude of each energy is greater than the corresponding Bohr level by a factor of 22 = 4: The Balmer and Lyman series of spectral lines in hydrogen have analogs in singly ionized helium, but at shorter wavelengths; the photons corresponding to these transitions are beyond the visiblelight spectrum. The transitions that end on the n = 4 state produce a set of spectral lines called the Pickering series. The visible-light lines in this series were first seen in the light from certain hot stars, but some of the lines overlap the hydrogen Balmer series lines, so these lines were initially missed. This led to an initial mischaracterization of the source of the lines. The Paschen series of wavelengths in the hydrogen…arrow_forwardSuppose that in a sample of 1000 identically prepared electrons, each have a wave function: V (x, t) = Ae-l"e-wtcos(Tx) Schematize your probability density and show how many electrons will be detected in the range -1/2 < a < 1/2 , if measurements to determine the position of electrons in the samples are made in t =Tarrow_forwardThe wavelengths of the Brackett series for hydrogen are given by n = 5, 6, 7,.... (a) What are the wavelengths of the first three spectral emission lines in this series (in nm)? (Enter them in order of decreasing wavelength.) largest value nm nm smallest value nm (b) In which band of the electromagnetic spectrum do these lines appear? visible light region O infrared region O ultraviolet region O gamma ray region O x-ray regionarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON