The student engineer of a campus radio station wishes to verify the effectiveness of the lightning rod on the antenna mast (Fig. P27.49). The unknown resistance R x is between points C and E . Point E is a true ground, but it is inaccessible for direct measurement because this stratum is several meters below the Earth’s surface. Two identical rods are driven into the ground at A and B , introducing an unknown resistance R y . The procedure is as follows. Measure resistance R 1 between points A and B , then connect A and B with a heavy conducting wire and measure resistance R 2 between points A and C . (a) Derive an equation for R x in terms of the observable resistances, R 1 , and R 2 . (b) A satisfactory ground resistance would R x < 2.00 Ω. Is the grounding of the station adequate if measurements give R 1 = 13.0 Ω and R 2 = 6.00 Ω? Explain. Figure P27.49
The student engineer of a campus radio station wishes to verify the effectiveness of the lightning rod on the antenna mast (Fig. P27.49). The unknown resistance R x is between points C and E . Point E is a true ground, but it is inaccessible for direct measurement because this stratum is several meters below the Earth’s surface. Two identical rods are driven into the ground at A and B , introducing an unknown resistance R y . The procedure is as follows. Measure resistance R 1 between points A and B , then connect A and B with a heavy conducting wire and measure resistance R 2 between points A and C . (a) Derive an equation for R x in terms of the observable resistances, R 1 , and R 2 . (b) A satisfactory ground resistance would R x < 2.00 Ω. Is the grounding of the station adequate if measurements give R 1 = 13.0 Ω and R 2 = 6.00 Ω? Explain. Figure P27.49
Solution Summary: The author explains the equation for R_x in terms of the observable resistances.
The student engineer of a campus radio station wishes to verify the effectiveness of the lightning rod on the antenna mast (Fig. P27.49). The unknown resistance Rx is between points C and E. Point E is a true ground, but it is inaccessible for direct measurement because this stratum is several meters below the Earth’s surface. Two identical rods are driven into the ground at A and B, introducing an unknown resistance Ry. The procedure is as follows. Measure resistance R1 between points A and B, then connect A and B with a heavy conducting wire and measure resistance R2 between points A and C. (a) Derive an equation for Rx in terms of the observable resistances, R1, and R2. (b) A satisfactory ground resistance would Rx < 2.00 Ω. Is the grounding of the station adequate if measurements give R1 = 13.0 Ω and R2 = 6.00 Ω? Explain.
Using the Experimental Acceleration due to Gravity values from each data table, Data Tables 1, 2, and 3; determine the Standard Deviation, σ, mean, μ, variance, σ2 and the 95% Margin of Error (Confidence Level) Data: Ex. Acc. 1: 12.29 m/s^2. Ex. Acc. 2: 10.86 m/s^2, Ex. Acc. 3: 9.05 m/s^2
In the Super Smash Bros. games the character Yoshi’s has a “ground pound” down special move where he launches himself downward to attack an enemy beneath him. A) If Yoshi flings himself downwards at 9.76 miles per hour to hit an enemy 10.5 m below him, how fast is Yoshi traveling when he hits the enemy? 1 mile = 1609 m B) How much time does it take Yoshi to hit the enemy beneath him?
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
DC Series circuits explained - The basics working principle; Author: The Engineering Mindset;https://www.youtube.com/watch?v=VV6tZ3Aqfuc;License: Standard YouTube License, CC-BY