Figure P27.48 shows a circuit model for the transmission of an electrical signal such as cable TV to a large number of subscribers. Each subscriber connects a load resistance R L between the transmission line and the ground. The ground is assumed to be at zero potential and able to carry any current between any ground connections with negligible resistance. The resistance of the transmission line between the connection points of different subscribers is modeled as the constant resistance R T . Show that the equivalent resistance across the signal source is R eq = 1 2 [ ( 4 R T R L + R T 2 ) 1 / 2 + R T ] Suggestion: Because the number of subscribers is large, the equivalent resistance would not change noticeably if the first subscriber canceled the service. Consequently, the equivalent resistance of the section of the circuit to the right of the first load resistor is nearly equal to R eq . Figure P27.48
Figure P27.48 shows a circuit model for the transmission of an electrical signal such as cable TV to a large number of subscribers. Each subscriber connects a load resistance R L between the transmission line and the ground. The ground is assumed to be at zero potential and able to carry any current between any ground connections with negligible resistance. The resistance of the transmission line between the connection points of different subscribers is modeled as the constant resistance R T . Show that the equivalent resistance across the signal source is R eq = 1 2 [ ( 4 R T R L + R T 2 ) 1 / 2 + R T ] Suggestion: Because the number of subscribers is large, the equivalent resistance would not change noticeably if the first subscriber canceled the service. Consequently, the equivalent resistance of the section of the circuit to the right of the first load resistor is nearly equal to R eq . Figure P27.48
Solution Summary: The author explains that the number of resistance in the circuit is the equivalent resistance across the signal source as shown in figure.
Figure P27.48 shows a circuit model for the transmission of an electrical signal such as cable TV to a large number of subscribers. Each subscriber connects a load resistance RL between the transmission line and the ground. The ground is assumed to be at zero potential and able to carry any current between any ground connections with negligible resistance. The resistance of the transmission line between the connection points of different subscribers is modeled as the constant resistance RT. Show that the equivalent resistance across the signal source is
R
eq
=
1
2
[
(
4
R
T
R
L
+
R
T
2
)
1
/
2
+
R
T
]
Suggestion: Because the number of subscribers is large, the equivalent resistance would not change noticeably if the first subscriber canceled the service. Consequently, the equivalent resistance of the section of the circuit to the right of the first load resistor is nearly equal to Req.
How can i solve this if n1 (refractive index of gas) and n2 (refractive index of plastic) is not known. And the brewsters angle isn't known
2. Consider the situation described in problem 1 where light emerges horizontally from ground level.
Take k = 0.0020 m' and no = 1.0001 and find at which horizontal distance, x, the ray reaches a height
of y = 1.5 m.
2-3. Consider the situation of the reflection of a pulse at the interface of two string described in the previous problem. In addition to the net disturbances being equal at the junction, the slope of the net
disturbances must also be equal at the junction at all times. Given that p1 = 4.0 g/m, H2 = 9.0 g/m
and Aj = 0.50 cm find 2. A, (Answer: -0.10 cm) and 3. Ay. (Answer: 0.40 cm)please I need to show all work step by step problems 2 and 3
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.