MASTERINGPHYSICS W/ETEXT ACCESS CODE 6
13th Edition
ISBN: 9781269542661
Author: YOUNG
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 28, Problem 28.45E
A solenoid that is 35 cm long and contains 450 circular coils 2.0 cm in diameter carries a 1.75-A current. (a) What is the magnetic field at the center of the solenoid, 1.0 cm from the coils? (b) Suppose we now' stretch out the coils to make a very long wire carrying the same current as before. What is the magnetic field 1.0 cm from the wire’s center? Is it the same as that in part (a)? Why or why not?
Expert Solution & Answer
Learn your wayIncludes step-by-step video
schedule03:17
Students have asked these similar questions
î
A proton is projected in the positive x direction into a region of uniform electric field E = (-5.50 x 105) i N/C at t = 0. The
proton travels 7.20 cm as it comes to rest.
(a) Determine the acceleration of the proton.
magnitude 5.27e13
direction -X
m/s²
(b) Determine the initial speed of the proton.
8.71e-6
magnitude The electric field is constant, so the force is constant, which means the acceleration will be constant.
m/s
direction +X
(c) Determine the time interval over which the proton comes to rest.
1.65e-7
Review you equations for constant accelerated motion. s
Three charged particles are at the corners of an equilateral triangle as shown in the figure below. (Let q = 2.00 μC, and
L = 0.750 m.)
y
7.00 με
60.0°
L
9
-4.00 μC
x
(a) Calculate the electric field at the position of charge q due to the 7.00-μC and -4.00-μC charges.
112
Once you calculate the magnitude of the field contribution from each charge you need to add these as vectors.
KN/CI + 64
×
Think carefully about the direction of the field due to the 7.00-μC charge. KN/Cĵ
(b) Use your answer to part (a) to determine the force on charge q.
240.0
If you know the electric field at a particular point, how do you find the force that acts on a charge at that point? mN
Î + 194.0
×
If you know the electric field at a particular point, how do you find the force that acts on a charge at that point? mN
In the Donkey Kong Country video games you often get around by shooting yourself out of barrel cannons. Donkey Kong wants to launch out of one barrel and land in a different one that is a distance in x of 9.28 m away. To do so he launches himself at a velocity of 22.6 m/s at an angle of 30.0°. At what height does the 2nd barrel need to be for Donkey Kong to land in it? (measure from the height of barrel 1, aka y0=0)
Chapter 28 Solutions
MASTERINGPHYSICS W/ETEXT ACCESS CODE 6
Ch. 28.1 - (a) If two protons are traveling parallel to each...Ch. 28.2 - An infinitesimal current element located at the...Ch. 28.3 - The accompanying figure shows a circuit that lies...Ch. 28.4 - A solenoid is a wire wound into a helical coil....Ch. 28.5 - Prob. 28.5TYUCh. 28.6 - The accompanying figure shows magnetic field lines...Ch. 28.7 - Prob. 28.7TYUCh. 28.8 - Which of the following materials are attracted to...Ch. 28 - A topic of current interest in physics research is...Ch. 28 - Streams of charged particles emitted from the sun...
Ch. 28 - The text discussed the magnetic field of an...Ch. 28 - Prob. 28.4DQCh. 28 - Pairs of conductors carrying current into or out...Ch. 28 - Suppose you have three long, parallel wires...Ch. 28 - In deriving the force on one of the long,...Ch. 28 - Two concentric, coplanar, circular loops of wire...Ch. 28 - A current was sent through a helical coil spring....Ch. 28 - Prob. 28.10DQCh. 28 - Prob. 28.11DQCh. 28 - Two very long, parallel wires carry equal currents...Ch. 28 - In the circuit shown in Fig. Q28.13, when switch S...Ch. 28 - A metal ring carries a current that causes a...Ch. 28 - Prob. 28.15DQCh. 28 - Prob. 28.16DQCh. 28 - If a magnet is suspended over a container of...Ch. 28 - Prob. 28.18DQCh. 28 - Prob. 28.19DQCh. 28 - A cylinder of iron is placed so that it is free to...Ch. 28 - Prob. 28.1ECh. 28 - Prob. 28.2ECh. 28 - An electron moves at 0.100c as shown in Fig....Ch. 28 - An alpha particle (charge +2e) and an electron...Ch. 28 - A 4.80-C charge is moving at a constant speed of...Ch. 28 - Positive point charges q = +8.00 C and q' = +3.00...Ch. 28 - A negative charge q = 3.60 106 C is located at...Ch. 28 - An electron and a proton are each moving at 735...Ch. 28 - A straight wire carries a 10.0-A current (Fig....Ch. 28 - A short current element dl = (0.500 mm) carries a...Ch. 28 - A long, straight wire lies along the z-axis and...Ch. 28 - Two parallel wires are 5.00 cm apart and carry...Ch. 28 - Prob. 28.13ECh. 28 - A square wire loop 10.0 cm on each side carries a...Ch. 28 - The Magnetic Field from a Lightning Bolt....Ch. 28 - A very long, straight horizontal wire carries a...Ch. 28 - Prob. 28.17ECh. 28 - BIO Bacteria Navigation. Certain bacteria (such as...Ch. 28 - (a) How large a current would a very long,...Ch. 28 - Two long, straight wires, one above the other, are...Ch. 28 - A long, straight wire lies along the y-axis and...Ch. 28 - BIO Transmission Lines and Health. Currents in dc...Ch. 28 - Two long, straight, parallel wires, 10.0 cm apart,...Ch. 28 - A rectangular loop with dimensions 4.20 cm by 9.50...Ch. 28 - Four, long, parallel power lines each carry 100-A...Ch. 28 - Four very long, current-carrying wires in the same...Ch. 28 - Two very long insulated wires perpendicular to...Ch. 28 - Three very long parallel wires each carry current...Ch. 28 - Two long, parallel wires arc separated by a...Ch. 28 - Prob. 28.30ECh. 28 - Lamp Cord Wires. The wires in a household lamp...Ch. 28 - Prob. 28.32ECh. 28 - BIO Currents in the Brain. The magnetic field...Ch. 28 - Calculate the magnitude and direction of the...Ch. 28 - Calculate the magnitude of the magnetic field at...Ch. 28 - A closely wound, circular coil with radius 2.40 cm...Ch. 28 - A single circular current loop 10.0 cm in diameter...Ch. 28 - A closely wound coil has a radius of 6.00 cm and...Ch. 28 - Two concentric circular loops of wire lie on a...Ch. 28 - Figure E28.40 shows, in cross section, several...Ch. 28 - A closed curve encircles several conductors. The...Ch. 28 - As a new electrical technician, you are designing...Ch. 28 - Prob. 28.43ECh. 28 - Prob. 28.44ECh. 28 - A solenoid that is 35 cm long and contains 450...Ch. 28 - A 15.0-cm-long solenoid with radius 0.750 cm is...Ch. 28 - A solenoid is designed to produce a magnetic field...Ch. 28 - A toroidal solenoid has an inner radius of 12.0 cm...Ch. 28 - A magnetic field of 37.2 T has been achieved at...Ch. 28 - An ideal toroidal solenoid (see Example 28.10) has...Ch. 28 - A wooden ring whose mean diameter is 14.0 cm is...Ch. 28 - A toroidal solenoid with 400 turns of wire and a...Ch. 28 - A long solenoid with 60 turns of wire per...Ch. 28 - The current in the windings of a toroidal solenoid...Ch. 28 - A pair of point charges, q = +8.00 C and q' = 5.00...Ch. 28 - At a particular instant, charge q1 = +4.80 106C...Ch. 28 - Two long, parallel transmission lines, 40.0 cm...Ch. 28 - A long, straight wire carries a current of 8.60 A....Ch. 28 - Prob. 28.59PCh. 28 - Prob. 28.60PCh. 28 - An electric bus operates by drawing direct current...Ch. 28 - Figure P28.62 shows an end view of two long,...Ch. 28 - Prob. 28.63PCh. 28 - The long, straight wire AB shown in Fig. P28.64...Ch. 28 - CP Two long, parallel wires hang by 4.00-cm-long...Ch. 28 - The wire semicircles shown in Fig. P28.66 have...Ch. 28 - CALC Helmholtz Coils. Figure P28.67 is a sectional...Ch. 28 - Prob. 28.68PCh. 28 - CALC A long, straight wire with a circular cross...Ch. 28 - CALC The wire shown in Fig. P28.70 is infinitely...Ch. 28 - Prob. 28.71PCh. 28 - Prob. 28.72PCh. 28 - An Infinite Current Sheet. Long, straight...Ch. 28 - Long, straight conductors with square cross...Ch. 28 - A long, straight, solid cylinder, oriented with...Ch. 28 - Prob. 28.76PCh. 28 - DATA You use a teslameter (a Hall-effect device)...Ch. 28 - DATA A pair of long, rigid metal rods, each of...Ch. 28 - CP Two long, straight conducting wires with linear...Ch. 28 - Prob. 28.80CPCh. 28 - BIO STUDYING MAGNETIC BACTERIA. Some types of...Ch. 28 - Prob. 28.82PPCh. 28 - The solenoid is removed from the enclosure and...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Distinguish between microevolution, speciation, and macroevolution.
Campbell Essential Biology (7th Edition)
The number of named species is about ________, but the actual number of species on Earth is estimated to be abo...
Biology: Life on Earth with Physiology (11th Edition)
The distances you obtained in Question 3 are for only one side of the ridge. Assuming that a ridge spreads equa...
Applications and Investigations in Earth Science (9th Edition)
27. Consider the reaction.
Express the rate of the reaction in terms of the change in concentration of each of...
Chemistry: Structure and Properties (2nd Edition)
Flask A contains yeast cells in glucose-minimal salts broth incubated at 30C with aeration. Flask B contains ye...
Microbiology: An Introduction
MAKE CONNECTIONS Balancing selection can maintain variation at a locus (see Concept 23.4). Based on the foragi...
Campbell Biology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- For which value of θ is the range of a projectile fired from ground level a maximum? 90° above the horizontal 45° above the horizontal 55° above the horizontal 30° above the horizontal 60° above the horizontalarrow_forwardA map from The Legend of Zelda: The Breath of the Wild shows that Zora's Domain is 7.55 km in a direction 25.0° north of east from Gerudo Town. The same map shows that the Korok Forest is 3.13 km in a direction 55.0° west of north from Zora's Domain. The figure below shows the location of these three places. Modeling Hyrule as flat, use this information to find the displacement from Gerudo Town to Korok Forest. What is the magnitude of the displacement? Find the angle of the displacement. Measure the angle in degrees north of east of Gerudo Town.arrow_forwardRace car driver is cruising down the street at a constant speed of 28.9 m/s (~65 mph; he has a “lead” foot) when the traffic light in front of him turns red. a) If the driver’s reaction time is 160 ms, how far does he and his car travel down the road from the instant he sees the light change to the instant he begins to slow down? b) If the driver’s combined reaction and movement time is 750 ms, how far do he and his car travel down the road from the instant he sees the light change to the instant he slams on her brakes and car begins to slow down? c) If the driver’s average rate of acceleration is -9.5 m/s2 as he slows down, how long does it take him to come to a stop (use information about his speed of 28.9 m/s but do NOT use his reaction and movement time in this computation)? Please answer parts a-c. Show all work. For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places unless stated otherwise.arrow_forward
- Below you will find 100 m split times for the American and France men’s 4x100 meter free style relay race during the 2008 Beijing Summer Olympics). Answer questions a-d. a) What was the total race time for each team, in seconds? b) Which team won the race? What was the difference in the teams’ times? c) What was the average speed for each team for the whole race? (provide answer to 3 decimal places). d) Calculate the average speed for each swimmer and report the results in a table like the one above. Remember to show the calculation steps. (provide answer to 3 decimal places). PLEASE SHOW ALL WORK AND STEPS.arrow_forwardNeed complete solution Pleasearrow_forwardBelow you will find 100 m split times for the American and France men’s 4x100 meter free style relay race during the 2008 Beijing Summer Olympics). Fill out the chart below. Calculate average speed per split (m/s). Show all work.arrow_forward
- No chatgpt pls will upvotearrow_forwardNo chatgpt plsarrow_forward4.4 A man is dragging a trunk up the loading ramp of a mover's truck. The ramp has a slope angle of 20.0°, and the man pulls upward with a force F whose direction makes an angle of 30.0° 75.0° with the ramp (Fig. E4.4). (a) How large a force F is necessary for the component Fx parallel to the ramp to be 90.0 N? (b) How large will the component Fy perpendicular to the ramp be then? Figure E4.4 30.0 20.0°arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Magnets and Magnetic Fields; Author: Professor Dave explains;https://www.youtube.com/watch?v=IgtIdttfGVw;License: Standard YouTube License, CC-BY